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The passive admixture transport model in the Azov Sea is considered. The problem of cartelistic 

impulse local source identification at the sea surface based on adjoint method is solving by integration 

of independent series of adjoint tasks. Simultaneous solution of this problem at the parallel mode is 

realized by the aforementioned approach. The efficiency of the algorithm optimal value power of 

source search agreed with the data measurements is shown in the test example. The measurement data 

assimilation algorithm in the passive admixture transfer model is implemented applying variational 

methods of filtration for optimal estimate retrieval. The retrieval is carried out by means of the 

method of adjoint equations and solving of linear systems. On the basis of the variational filtration 

method of data assimilation, the optimal estimate retrieval algorithm for pollution source power 

identification is constructed. In application of the algorithm, the integration of the main, linked and 

adjoint problems is implemented. Integration problems are solved using TVD approximations. For the 

application of the procedure, the Azov current fields and turbulent diffusion coefficients are obtained 

using the sigma coordinate ocean model (POM) under the eastern wind stress conditions being 

dominant at the observed time period. Furthermore, the results can be used to perform numerical data 

assimilation on loads of suspended matter. 
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Introduction. The increasing anthropogenic impact on the Azov Sea water 

area requires the creation of environmental condition monitoring systems, allowing 

the operative assessment of the environmental situation in areas exposed to human 

impact, especially in heavy traffic and port areas. Solution of these problems is 

possible on the basis of methods of mathematical modeling of passive admixture 

transport [1] and methods for solving inverse problems [2 – 4], where the 

identification of certain numerical simulation parameters are based on 

measurements due to their assimilation. Recently, the variational assimilation 

methods and the adjoint method are actively developed and used to handle the 

oceanographic problems [5 – 7]. To provide timely information about the studied 

object condition numerical implementation of these models and algorithms should 

be realized on high-performance computers applying with the up-to-date 

approaches, including parallelization. The algorithms of measurement data 

assimilation are generally based on the minimization of a quadratic functional 

quality that characterizes the deviation of the model solutions from the 

measurement data. At that, the model of passive admixture transport acts as 

limitations on the variations of the input parameters. In [8] a variational algorithm 

for the power source identification is considered. In this paper, the adjoint method 

[9] is applied. It gives a possibility of the efficient (in terms of computing process 

organization) search for pollution source parameters. 
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The adjoint method. Below the model of passive admixture transport in σ-

coordinates is considered 
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with the following conditions on the side boundaries 
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the boundary conditions on the surface and at the bottom  
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and the initial data as follows 
 

  00,σ,, yxC ,                                               (4) 
 

where t  is the time; ,0x 0y  are the point source coordinates; D  is the dynamic 

depth; C  is the admixture concentration; Q  is the instant point source with the 

power SQ ; WVU ,,  are the velocity field components; HA  and K  are horizontal 

and vertical diffusion components correspondingly; n is the normal to the side 

boundary. 

Multiplying the expressions (1) – (4) on C and integrating by parts, taking 

into account the boundary conditions and the adjoint equation analog to the σ-

coordinates 
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choosing C to be a solution of the following adjoint problem: 
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we’ll obtain 
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where S  is the sea surface;      nn yyxxTtg  δδδ , ,,...,1 Nn   N – is the 

total number of measuring points for the final time. Taking into account the 

representations for Q and g from the formula (9), we have 
 

   0,,,0,,,0 00
*

nnnS yxTCyxCQ  , ....,,1 Nn                            (10) 
 

The formula (9) is similar to the formula obtained in the method of 

concentration field assessment [10] for different initial conditions, and is inherently 

a dual representation [9] of concentration through the power and the relevant 

adjoint problem solution. Note that N  of the adjoint problems for N points are 

independent from each other and may be implemented in parallel by different 

executors (processors). 

In case the emission point coordinates  00 , yx  are to be determined, then 

solving N of the adjoint problems (6) – (8), it is possible to define the area 

,...,,1, NnLn    where nL  are areas of the essential values of *
nC . The 

preliminary numerical experiments carried out have shown that a priori information 

about the location and boundaries of the contaminated plume is important in 

determining the   area.  Location of the points  ii yx ,  on the pollution area 

boundary permits to narrow significantly the   area. The measuring data 

application in the points of maximal concentration leads to the better conditionality 

of the problem being solved of the .SQ definition. Choosing   ii yx , , 

,,...,1 Mi  M of the systems for various coordinates of the pollution source can be 

built. The best assessment of SQ  will correspond to the true condition of the 

source. For the condition    00 ,, yxyx ii   the values ,S
n
S QQ  .,...,1 Nn   The 

values of SQ  are found from the system (10) by means of the filtration method 

[11], well-proven in the solution of oceanographic problems [12]. In case of the 

overdetermined system (10) and errors in the measuring of nC , the measuring data 

filtration taking in account all the information concentrated in N equations is 

necessary. As a result of this procedure, the equations of the new system are sorted 

by rank and uninformative equations are removed. Eventually, in the first equation 

of the system the equation with the best conditionality appears. By means of this 

equation the value of SQ is found 

 

The results of numerical experiments. Numerical experiments were carried 

out applying the model of the work [1] to the Azov Sea. To test the algorithm of 

the source power identification, the calculation of the model current field under the 

influence of constant wind of the northeastern direction at a speed of 10 m/s was 

performed. As a result of simulation the spatial distribution of the coefficients HA  

and K  was also obtained. The velocity fields and turbulent diffusion coefficients 

were used as input data in the integration of passive admixture transport model for 

a period of 5 days. 
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Fig. 1. Location of the instant point source, normed concentration field and measuring points 

 

 

 
Fig. 2. Solution of the adjoint problems,  area and location of the pollution sources  

 

Model concentration field was calculated when 1SQ , and the calculation 

results were normalized to the maximum value. In Fig. 1 the true location of the 

instant point source is indicated by a black dot. Except the model concentration 

field, this figure shows four measuring points  4N . The result of integration of 

the four adjoint problems (6) – (8) is demonstrated in Fig. 2. The   area 

corresponding to these adjoint problems is colored grey. From this figure it can be 

clearly seen that the true source location, marked by 1, belongs to the   area. For 

this point the solution  of the four equations of the system (10) has the following 

values: ,024.11 SQ  ,9882.02 SQ 9581.03 SQ , 2446.14 SQ ; for the point 2 – 

8863.01 SQ , 2692.22 SQ , 3714.13 SQ , 1078.214 SQ ; for the point 3 – 
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5234.21 SQ , 1829.12 SQ , 4601.03 SQ , 2467.14 SQ . The point 1 is the true 

location of the pollution source, as the values in this point are 1i
SQ . The values 

of i
SQ in the other points are increasingly different from each other, so are not 

considered. From the overdetermined system (10) for the point 1 on the basis of the 

filtration method, 0122.1SQ is found. 

 

Conclusion. The numerical experiments showed that the result of the pollution 

source identification parameters to a great degree depend on location of the 

measuring points. The most accurate reproduction of the true value of the power of 

the pollution source is obtained in the case where measurements are made in the 

area of maximum concentration field values, which leads to a better conditionality 

of the problem being solved. Application of the filtration method in solving the 

overdetermined system permits to obtain the solution with all the incoming data 

taken into account. In general, the performed numerical experiments show that the 

algorithm for the identification of pollution power source is reliable. The results 

can be used to solve various problems of ecological orientation in the study of the 

impact of anthropogenic pollution sources in the waters of the Azov and Black 

Seas. 
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