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Purpose. Considered are the processes of dense bottom water formation in winter in the region of 
the Novaya Zemlya northwestern coast, its further propagation (cascading) towards the St. Anna 
trough and then to the open ocean. The goal of the paper is to show that the process of such 
propagation is closely related to generation of the mesoscale eddies. 
Methods and Results. The data of available measurements indicate only some residual forms of such 
a movement, since they cover mainly a summer season. Numerical study was carried out using 
the system of the nested models SibCIOM and SibPOM. In course of the numerical experiments it 
became possible to show the system capability in describing the water bottom structure and to 
reproduce the process of bottom water propagation in details. Analysis of the above-mentioned 
process has revealed energy conversion of the available potential energy of a regular motion into 
the potential energy of eddy formations. The eddy structures’ ageostrophicity, in its turn, contributes 
to the accelerated advancement of dense shelf waters downard along the sloping bottom. 
Conclusions. One of the important features of cascading is that at the initial stage, it is accompanied 
by active generation of the mesoscale eddy structures. Both processes interact energetically and 
contribute to increase of heat and mass exchange between the shelf and the open ocean. Proper 
description of this exchange is a prerequisite for successful modeling of the intermediate and deep 
water thermodynamics in the Arctic Ocean. 
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Introduction 
The process of formation and distribution of dense waters on the shelf of 

the marginal seas is one of the main in terms of the shelf and the open ocean 
interaction. In the absence of such relation the deep ocean could be considered 
within the boundaries of the shelf slope with no regard to shallow areas. However, 
it is the processes on the shelf, and only those of them as a result of which 
sufficiently dense waters are formed that can reach the corresponding depths, 
largely determine the structure of the intermediate and deep waters of the World 
Ocean. Particularly, the vertical structure of the Arctic Ocean waters in a layer 
below 500–700 m cannot be explained without the assumption that shelf processes 
are actively involved in their formation. 

The formation of dense waters in the Arctic is often associated with 
the development of wind polynya, which arises as a result of the wind action when 
its direction contributes to the ice movement off the coast and the formation of 
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a water surface free from ice (see, for example, [1, 2]). Cold eastern winds in 
the area of Novaya Zemlya western shores often contribute to the formation of 
polynya here [1]; as a result, more than 10 m of ice (on average) forms in this 
polynya during one winter period [3]. Such an active growth of young ice leads to 
an increase in salinity and, accordingly, in water density, the development of 
convective motion and the involvement of bottom Atlantic waters of the Barents 
Sea [1, 4]. As a result, a bottom layer of dense water is formed with a temperature 
of about –0.5 °С which makes up half of the flux coming from the Barents Sea to 
the Kara Sea. 

Previous studies showed that the interannual variability in the intensity of 
dense water formation is significant (see, for example, [5]) and potential sources of 
variability in the characteristics of dense water formation were identified [2, 5–9]. 
An important characteristic is the salinity of water before freezing, and for the 
region of Novaya Zemlya western coast the determining factor is the presence of 
desalinated waters of river origin carried by the Norwegian and Novaya Zemlya 
coastal currents [2, 5, 6]. However, in [7] it was shown that the processes of ice 
freezing and melting are more important than river waters and, according to 
the results of [9], ice import through the northern boundaries of the sea also plays 
an important role. 

Another source of variability in the rate of dense water formation is the vertical 
stability of the water column [7, 8]. According to [7], the initial stratification 
depends on the Atlantic waters effect on the rate of ice freezing and melting and in 
[8] it is argued that the flux of Atlantic waters to the shelf of the Barents Sea can 
cause negative feedback both for penetrating convection and for ice growth. 
The latter is important for the formation of dense waters due to salt evolution [1-3]. 
Moreover, it came to be understood that the climate of the region is largely 
dependent on Atlantic incomes. In [10] it was shown that the key factor in 
reconstruction of thermohaline fields on large time scales is the interaction with 
the Atlantic Ocean – the source of heat and salt water. Any variation in 
the characteristics of this flux will inevitably affect the production of dense water 
[7]. High rate of ice melting in summer and the strong influx of Atlantic waters 
intensify stratification and hamper the formation of bottom dense waters in winter. 
In [5] the importance of variability of the Atlantic water characteristics, arising as 
a result of significant mixing and involvement as a result of the distribution of 
dense bottom waters along the sloping bottom (cascading), formed in shallow areas 
and moving towards the recesses in the Barents Sea and towards the St. Anna 
Trough. According to [11], due to the cascading process (or shelf convection) 
dense water formed as a result of overcooling or ice formation on the continental 
shelf is involved in the formation of intermediate or deep waters of the open ocean. 

The presence of preconditions for the formation of dense waters is also 
important and can be associated with both local ice melting and the properties of 
the Novaya Zemlya current [4]. Dense water mainly flows into the Kara Sea where 
it makes up 63% (1.2 Sv) of the total inflow from the Barents Sea, and its average 
density is 1028.07 kg/m3. The dense water production is maximal in the shallow 
area when the Barents Sea is in a cold state (small influx from the Atlantic and a lot 
of ice). During warm time in the presence of strong transit of Atlantic waters most 
of dense water is formed on the shelf due to the general cooling of Atlantic waters. 
Nevertheless, in [4], based on their own results, the authors indicate that during 

PHYSICAL OCEANOGRAPHY VOL. 26   ISS. 6   (2019) 485 



extremely warm periods (the 1950s and the end of the 2000s) the total production 
of dense water drops significantly. 

Thus, in order to understand the variability of dense water formation it is 
necessary to study large-scale circulation, hydrography, atmospheric forcing and 
the dominant mixing mechanisms that make shelf waters more suitable for 
the formation of dense water. 

The main objectives of this work are: 
– the study of conditions for the formation of dense bottom waters on the shelf

of the Barents and the Kara Seas and their distribution towards the open ocean; 
– the analysis of the development of eddy processes accompanying this

movement. 
In order to carry out the study, we are to use numerical modeling method; 

therefore, the results of comparing model fields with observational data are also 
presented in the work. 

The study area 
The areas of our interest, for which, according to a number of studies [2, 5, 6], 

the formation and distribution of dense bottom waters are characteristic, are shown 
in Fig. 1. In the area indicated by letter A coastal polynya forms during winter and 
early spring and the formation of dense waters occurs due to the active freezing of 
young ice and cooling of the ocean open surface. It is also possible that upwelling 
makes some contribution as a result of which the bottom layer of Atlantic waters 
rises to the surface and cools. As it is salty due to the cooling, it acquires 
the density of deep Arctic waters. In addition, in the 2000s even in winter 
the floating ice boundary was located near the northern tip of Novaya Zemlya, 
which also includes the ice formation mechanism at the ice boundary in 
the polynya formed by the incoming warm waters of Atlantic origin. 

F i g.  1. Topography of the Kara Sea including indications of location of the key geographical 
objects: A – the area of formation of dense bottom waters, B – the area where these waters reach the 
headwaters of the St. Anna trough, C – the area oriented along the axis of the St. Anna trough, A – 
C – the region uniting these areas, D – the region where the river water plume develops. The sections 
are shown by the black lines including the marks: 1 – the Strait of Kara Gate; 2 – opening between 
the Franz Josef Land and the Novaya Zemlya, 3 – mouth of the St. Anna trough, 4 – depression in 
the bottom topography through which the Atlantic waters flow into zones A, B and C; 5 and 6 – 
coastal sections, 7 – cross section of the right slope of the St. Anna trough. Yellow triangles indicate 
position of the points where the CTD measurements used in this work were performed 
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The second region, indicated in Fig. 1 by letter B, is a zone of further 
distribution of formed dense waters. In fact, this is the headwaters of St. Anna 
trough adjacent to the northern tip of Novaya Zemlya. Owing to the proximity of 
the island, it is also possible that polynya appears in the presence of winds of 
the corresponding direction. However, judging by the available data [12] this does 
not occur here as often and not as long as in zone A. 

The third region, marked with the letter C, is the zone of the main part of 
St. Anna trough, the mouth of which opens towards the Amundsen basin, 
the deepest part of the Arctic Ocean. We expect here the development of active 
cascading as dense waters move towards the open ocean. 

The system of nested models 
Despite the significant progress achieved in the field of the Arctic Ocean 

numerical modeling [13], the results obtained on the basis of large-scale models 
can vary significantly. For example, in [14] when comparing the balance of kinetic 
and available potential energy, it was shown that the energy balance obtained using 
large-scale models significantly differs below the abyssal level. More recent 
experiments such as Coordinated Ocean-ice Reference Experiments – Phase II 
(CORE-II) [15] have contributed to the understanding of significant regular errors 
in the Arctic Ocean modeling. In particular, it was noted that modern large-scale 
models need a more accurate description of the influx of Atlantic waters into 
the Arctic and the formation of dense water fluxes along the Arctic shelf slopes. 

For carrying out the study we used a system of nested numerical models of 
the ocean and its shelf seas developed at ICMMG SB RAS. The model embedding 
scheme is given earlier in [16]. The main idea is that the Laplace operator, which 
describes the thermal conductivity and diffusion of the salt, was applied only to 
deviations of temperature and salinity from their large-scale distributions. 
Feedback in this case was not taken into account. (For other embedding options see 
[17] and references therein). 

CORE-II reanalysis data, including the necessary set of characteristics of 
the lower atmosphere, the rate of precipitation and the incoming downward long 
and short-wave radiation [12] was used as atmospheric forcing. 

Analysis of the simulation results was carried out for 2007–2008, since during 
this period, in accordance with the tasks of the International Polar Year, a significant 
amount of data was obtained in the field of interest to us. 

SibCIOM model 
Siberian Coupled Ice-Ocean Model (SibCIOM) [18, 19], historically 

associated with the model [20], is used to simulate the large-scale distribution of 
hydrodynamic fields in the Arctic Ocean and the North Atlantic. The model 
equations are obtained taking into account the heat, salt and momentum 
conservation laws using traditional Boussinesq approximations, hydrostatics and 
rigid-lid approximation using the method of splitting into physical processes [21]. 
The mode separation method provides the separation of calculations for 
the barotropic and baroclinic modes. The barotropic mode is described using 
the equation for the integral stream function and the barotropic velocity 
components. Advective fluxes are approximated using Quadratic Upstream 
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Interpolation for Convective Kinematics with Estimated Streaming Terms 
(QUICKEST) scheme [22]. The parameterization of the upper mixed layer is 
carried out taking into account the Richardson number [23]. No-slip and 
impermeability conditions are realized on solid sections of the boundary. On 
the liquid sections of the boundary in the Bering Strait and in the mouths of 
the most significant rivers seasonal discharge variability is preset. On the southern 
stretch along the line of 20° S the transport that compensates for the previous 
tributaries uniformly along the entire boundary is preset. 

The ocean model works in conjunction with CICE 3 ice model [24] which 
describes the thermodynamics of five categories of ice and one category of snow 
[25] and uses a semi-Lagrangian approach to describe the advective transport [26]. 

The model area covers the Atlantic Ocean north of 20° S and the Arctic Ocean 
with a three-pole coordinate system, which has a horizontal resolution of 0.5° at 
the equator and at mid-latitudes, and within 10–25 km in the circumpolar region. 
Vertically the model has 38 fixed unevenly distributed levels with a minimum 
resolution of 5 m at surface. The model takes into account the influx of 52 most 
significant rivers of the region *. 

The model of the Kara Sea and the eastern Barents Sea 
SibPOM sigma coordinate shelf model, which is a modification of the Princeton 

University Princeton Ocean Model (POM) [27], was used as such model. It 
includes the parameterization of vertical turbulent processes and the correction of 
the horizontal pressure gradient [28]. The simulation area is shown in Fig. 1, 
the quasi-regular grid of the region is constructed on the basis of a spherical 
coordinate system with the poles selected so that the new equator is the central axis 
of the Kara Sea, while the horizontal resolution is 3–4 km, which, according to 
[29], allows reproducing only large mesoscale eddies . 

Numerical modeling results 
Comparison with previous modeling results  
The modeling results demonstrate a complex structure of currents in the region 

of our interest. It should be noted that the main circulation features described in 
previous works [30, 31] are only partially manifested in numerical calculations for 
2007–2008. Moreover, as in [32–35], it can be noted that the Kara Sea circulation 
varies significantly depending on the season and the prevailing atmospheric 
forcing. The interaction with the open part of the Arctic Ocean is carried out along 
the St. Anna trough and Voronin trough. 

Transports through the main straits of the simulated region, (Sv)      

Location of mouths SibPOM SibCIOM 
Inflow through the Strait of Kara Gate 0.10 0.52 
Inflow between the Franz Josef Land and the Novaya 
Zemlya 0.88 1.55 
Transport between the Franz Joseph Land and the 
Ushakov Island 1.07 1.56 

* Vorosmarty, C.J., Fekete, B.M. and Tucker B.A., 1998. Global River Discharge, 1807-1991, V. 1.1
(RivDIS). Oak Ridge, Tennessee, USA: ORNL DAAC. https://doi.org/10.3334/ORNLDAAC/199 
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F i g.  2. Time series of water transport (Sv) through sections 1–3 (Fig. 1): a – the Strait of Kara Gate, 
b – opening between the Franz Josef Land and the Novaya Zemlya, c – strait between the Franz 
Joseph Land and the Ushakov Island. Red symbols “+” are the values obtained by the SibPOM model, 
black line is their sliding average, blue dotted line is a result of the large-scale SibCIOM model 

The transport of water entering the Kara Sea through the Kara Gate Strait 
during the modeling period was, on average, 0.1 Sv (table), varying from –0.1 to 
0.3 Sv (Fig. 2, a). According to one of the earliest assessments [36], the transport is 
slightly higher –about 0.7 Sv. According to the results of large-scale modeling in 
1998 [37], it ranged from –0.023 to 0.015 Sv. Later estimates [38, 39] show the 
values of about 0.6 Sv. In our case, the large-scale model gives an average value of 
0.52 Sv (table, Fig. 2) with a variation range of 0.3–0.8 Sv. The maximum falls on 
December – January, the minimum – on May – June. Also, according to 
assessments [39] approximately 1.2 Sv enters the Kara Sea from the Barents Sea 
between Novaya Zemlya and Franz Joseph Land. According to the results of 
regional SibPOM model in 2007–2008 this transport was 0.88 Sv, while 
calculations using the large-scale SibCIOM model yield almost 2 times more, 1.55 
Sv (table, Fig. 2, b). According to assessments [39], most of this inflow is 
transported through the of St. Anna and Voronin troughs, as well as through the 
straits of Severnaya Zemlya. According to the results of our calculations 
the removal of water through the St. Anna trough is 1.07 Sv according to 
the regional model and 1.56 Sv according to SibCIOM model (table, Fig. 2, c). 
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From the total balance it follows that, according to the regional model, the inflow 
through the straits under consideration is not enough to compensate for the water 
removal through St. Anna trough, and, therefore, additional inflows are made 
through other sections: Franz Josef, Vilkitsky and Shokalsky Straits. According to 
the results of the large-scale model, these inflows, on the contrary, exceeded 
the transport through the St. Anna trough and, consequently, increased the transport 
through the Voronin trough and the Severnaya Zemlya straits. 

Comparison of modeling results with the measurement data 
The data obtained within the framework of the International Polar Year 

(publicly available) using CTD profilers (conductivity, temperature, depth) are 
considered to be the most reliable in the Arctic. However, the possibilities of such 
measurements are limited due to the presence of ice cover, and therefore 
the measurements cover mainly such periods of time and areas where non-
navigable ice is absent. In terms of studying the formation and distribution of dense 
waters, this is a significant limitation. In fact, we can use the available 
measurement data to monitor either the development of preconditions for 
the formation of water or the residual anomalies that persist until the beginning of 
summer in the bottom depressions and canyons. 

In May 2007, three temperature profiles were recorded in region A, and it can 
be stated that the difference between the temperature profiles and model 
calculations at the corresponding depths is within 0.5 °C and the model gives 
a slightly overestimated value. 

F i g.  3. Comparison of the temperature vertical profiles (a – d) at points 1–4 obtained on June 21, 
2007; their position is shown in panel (e). Solid black line is the CTD profiler data, blue dashed lines 
are the large-scale model profiles at the points within the 30 km neighborhood, red lines are 
the regional model profiles within the 10 km neighborhood, green line is one of these profiles with 
the highest correlation coefficient, cyan line – with the lowest RMS deviation 
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5 measurements were carried out in June, four of which were near the lowest 
point of a small trench located along the Novaya Zemlya shore with depths of 
150-200 m. The fifth measurement is in a shallow area with a depth of 100 m. 
Temperature profiles according to the simulation results and measurement data are 
in qualitative agreement and demonstrate an approximately homogeneous layer in 
the range of 30–120 m with a temperature of about 0.5 °C, above which lies 
a warmer surface layer, below is a bottom layer of colder water 10–20 m thick with 
a temperature of –1 to 0 °C. The difference in temperature on the three profiles 
does not exceed 0.5 °C and the deviations are approximately symmetrical both in 
the positive and negative directions (Fig. 3). The homogeneous layer on the fourth 
profile turned out to be warmer by about 1 °C according to the modeling results. 

F i g.  4. Vertical cross-section of temperature (°С) (a – c) and salinity (‰) (d – f) constructed by 
points 1–14 the position of which is represented in panel (g): a, d – based on the data of CTD-
profilographs for September, 2007; b, e – based on the results of the large-scale model; c, f – based on 
the results of the regional model. The horizontal coordinate is the distance along the section (km), 
the vertical one is the depth (m) 

In September 2007 15 measurements were performed in zone A, 14 of which 
form a cross section perpendicular to the coastline. In Fig. 4 the temperature and 
salinity cross section reconstructed from these points (Fig. 4, a, d) as compared 
with the section obtained from the results of numerical modeling (Fig. 4, c, f) are 
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represented. It can be seen from the comparison that, despite the fact that the large-
scale model (Fig. 4 b, e) used as the background temperature and salinity 
distributions have only approximate similarities with the real distribution, 
the regional model nevertheless reconstructs the main features of the region’s 
hydrology, in particular bottom layer of cold and salt water. However, 
the temperature of this layer is about 1 °C higher than the real one, and salinity is 
about 0.4 ‰ lower. In addition, there is a noticable difference in the upper layer 
caused by the difference in the position of the fields of the ice-snow cover and the 
places of its melting. Considering the fact that the large-scale model was integrated 
under effect of atmospheric forcing taken from the reanalysis data and without 
using the data assimilation procedure which, according to [40], gives a significant 
improvement, this difference can be considered quite satisfactory. 

Unfortunately, the period of the bottom layer formation is not covered by 
the available CTD measurements. 

In addition, to compare the simulation results with the measurement data 
the sections in B and C regions were constructed. In zone B residual traces of near-
bottom dense waters are barely traceable from the measurement data and model 
results which suggest that this zone is a transit one and bottom waters are not 
accumulated here, as well as in summer they are practically absent. 

F i g.  5. Vertical sections of temperature (° С) (a, b) and salinity (‰) (c, d) plotted from 
the measurements at points 4–7 the position of which is represented on panel (e): a, c – based on 
the CTD data collected in August, 2007; b, d – based on the regional model results. The horizontal 
coordinate is the distance along the section (km), the vertical one is the depth (m) 

In zone C the section obtained in August 2007 (Fig. 5) corresponds to 
the propagation trajectory of the Fram Strait branch of the Atlantic waters, which 
followed along the shelf slope and turned deep into St. Anna trough along its left 
slope. Atlantic water enters the trough in a depth range of 50–500 m and has 
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a temperature of about 2 °C. At 450–600 m depth a cold layer formed in 
the Barents Sea with temperatures below 0 °C and salinity of about 35 ‰ is 
observed. 

Analysis of cascading and eddy activity of the region 
Making sure that the qualitative picture of the distribution of hydrological 

characteristics obtained by the regional SibPOM model corresponds to the real 
distribution, we turn to the main task of the study – the analysis of eddy activity 
and the cascading process. 

We consider the field of the vertical component of ζ̂  relative vorticity [41] 
(hereinafter referred to as the relative vorticity): 

ζ / ,
η ξ

ˆ v u f
 ∂ ∂

= − ∂ ∂ 
 

where u  v  are the horizontal components of velocity along the curvilinear 
coordinates of ξ  and η  model; f  is Coriolis parameter. In Fig. 6 the distribution 
of the relative vorticity averaged in the Atlantic water layer 100–250 m in the 
region covering A, B and C zones in March 2007 and 2008 is represented. The 
same figure shows the horizontal velocity field averaged in the same layer. It can 
be seen that in winter in this region a significant amount of eddies is formed on a 
scale of 10-50 km (compared to September of the same years (not shown)). As 
usual (for the Northern Hemisphere), the most intense eddies of positive vorticity 
are mainly located on the left from the main stream of Atlantic waters and the ones 
of negative vorticity – on the right. The region of the relative vorticity greatest 
variation is located near the Northern Cape of Novaya Zemlya and to the west of it 
along the stream of Atlantic waters. On the right, in the area of negative vorticity, 
there is a coastal shallow where (with appropriate winds) wind polynya can form, 
as well as the dense water anomalies. 

In Fig. 7 four sections perpendicular to the trajectories of the Atlantic waters in 
this region (see sections 4–7 in Fig. 1) are represented. They are constructed 
according to the calculation results for March 15, 2007, during the period when, 
based upon Fig. 6, a, high eddy activity was noted. The color indicates the velocity 
component normal to the section with red tones corresponding to the direction of 
the main stream velocity, blue tones to the opposite current. On section 4 (Fig. 7, a) 
it can be seen that the movement is almost uniform along the vertical and is tied to 
a topographic slope with a difference of about 100 m (from 150 to 250 m), 
a velocity in the core of 20–30 cm/s and about 40 km stream width. Isolines of 
potential density show that water has a higher density than the environment with 
a maximum value near the bottom of about 28.0 kg/m3 (i.e. 1028.0 kg/m3). 

On the next section (Fig. 7, b, see section 5 in Fig. 1) it can be seen that 
the current has somewhat weakened (mainly due to the formation of the coastal 
branch), is still tied to the topographic slope at the same depths. The maximum 
velocities up to 22 cm/s are localized near the bottom. According to the position of 
the potential density isolines, it is possible to assume the wind polynya occurrence 
near the coastline along with the formation of heavy water with a density of 
28.6 kg/m3 in it, which ageostrophically spreads down the slope forming features 
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characteristic of cascading. The cascading layer boundary, according to 
the definition [42], approximately coincides with 28.0 kg/m3 isoline. Following 
[42, 43] we determined position of five points A, B, C, D, E, characterizing 
the cascading state, as follows: 

– A – the position of the point is determined by the density maximum on
the top of the slope, maxρ ; 

– B –in the case of cascading, following from point A down the slope
the density decreases and then increases again when certain depths are reached: 
point B is a one at which the bottom density reaches a value equal to maxρ  again;  

– C – this point is located in the density minimum point minρ if we follow
along the bottom from point A to point B; 

– D – this point, unlike the previous ones, is not located at the bottom, but
inside the water layer at a depth of point A. In [42] it is described as the first point 
not involved in cascading if we move horizontally from point A in the direction of 
increasing depth. So, it is a point with the characteristic properties of water 
corresponding to the cascading environment. Such a formulation does not provide 
the determination of the unique position of the point, so we decided to take for it 
the position of the minimum density in horizontal movement from point A to 
the direction of increasing depth; 

– E – this point is located above point B despite the fact that the density in it is
equal to the density in the point C, i.e. minρ . 

Parameter h  is defined as the ratio of the layer thickness above point A (in 
which the density value is greater than minρ ) to the depth of the ocean at point A. 
This dimensionless thickness of the cascading layer varying from 1 (density at 
point A is greater than minρ at all depths) to 0 (i.e. if max min=ρ ρ ) is defined in [42] 
as an indicator of the effectiveness of atmospheric impact on the formation of 
dense waters. So, h  is a proportion of the thickness of dense waters in the total 
thickness of the basin at point A and the closer these waters are to the surface, 
the greater is a role of atmospheric forcing in their formation. From the analysis of 
section 5 it follows that h  value is 1. This indicates that the formation of dense 
waters has not yet ended and, most likely, continues near the coast. Among the 7 
sections considered in [42], obtained in the region of the Novaya Zemlya western 
coast *, only in one case the atmospheric effect was equally strong, and h  
parameter is equal to 1. 

Another important characteristic of developing cascading is the parameter 
equal to the ratio of the density difference inside the cascading layer (maximum 
minus minimum) to the difference in maximum density inside the same layer with 
the density of surrounding waters: 

max min

max

ρ ρ 
ρ ρD

r −
=

−
. 

* Matishov, G., 1998. Climatic Atlas of the Barents Sea 1998: Temperature, Salinity, Oxygen,
NOAA Atlas NESDIS vol. 36. Washington, DC: US Government Printing Office. 
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F i g.  6. Relative vorticity fields in the area A – C in March, 2007 (a) and 2008 (b) vertically 
averaged in the 100–250 m layer. Red shadings correspond to cyclonic vorticity, blue shadings – 
to negative one; arrows indicate the current velocity averaged within the same depth range. Red 
and blue contours encircle the areas of positive and negative potential energy transformation BC. 
Sample arrows in the lower-left corner of both panels correspond to the velocity of 20 cm/s  

During the lifetime of the cascading process this value changes from a value close 
to unity at the initiation of the process when the minimum density in the cascading 
layer and the density of the surrounding waters coincide, to zero at its attenuation 
when the density difference in the cascading layer is barely identified, i.e. 

max minρ ρ≈ . From the density analysis in Fig. 7, b it follows that in our case this 
value is 0.63, i.e. the cascading is in the initial stage of development. The velocity 
scale of the dense water ageostrophic movement down the slope is determined by 
the formula from [44]: 

δρ ,
ρN

sV g
f

=

where δρ
ρg  is a reduced gravity; s  is a modulus of the bottom gradient (see below). 
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The assessment shows that, according to the characteristics of section 5, this 
velocity is 6.6 cm/s. Considering that the velocity along the isobaths is 22 cm/s, it 
can be concluded that the ageostrophic component of the velocity is approximately 
30% and the velocity vector is directed at an angle of about 17° to the isobath lines. 

BC

F i g.  7. Vertical cross-sections of current velocity (cm/s) and potential density (kg/m3 –1000). The 
velocity is represented by the component value normal to the section plane (positive values 
correspond to the forward direction) and is highlighted by the contours with spot colors. Potential 
density is represented by the magenta isolines. The directions of sections (a – d) correspond to 
sections 4–7 on Fig. 1. The horizontal coordinate is the distance along the section (km), the vertical 
one is the depth (m) 

The third section along the flux, shown in Fig. 7, c (see section 6 in Fig. 1), 
shows the concentration of the jet core near the bottom in 100–200 m layer and 
near a sharp slope at the coastline (jump from 0 to 180 m), so that the flux width 
decreases to 10 km. As a result, the velocity increased to 55 cm/s in the center of 
the stream. The behavior of potential density isolines also demonstrates the features 
characteristic of cascading. However, the formation of dense water under 
effect of atmospheric conditions is weakened here ( 0,39)h = and the cascading 
process, although it is in the middle of its development, is nevertheless closer to 
the attenuation (r = 0.5). The cascading velocity is still high VN=6.1 cm/s, however, 
since the velocity of the main stream increased, the share of ageostrophicity 
decreased to 11% and the angle between the velocity vector and the isobath line 
decreased to 6°. 

The fourth section shown in Fig. 7, d (see section 7 in Fig. 1) represents 
the vertical distribution of water propagation velocity along the axis of the St. Anna 
trough towards the open ocean. The stream core is concentrated at the bottom at 
300-500 m depth, the maximum velocity is 22 cm/s, the flux width is up to 50 km. 
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The cascading process characteristics indicate that it is practically not related 
to atmospheric processes ( 0,24)h = , it is in the final phase of its existence 
( r  = 0.1), its velocity is VN = 1.8 cm/s, the rotation of the velocity vector is 4.7° 
relative to the direction isobath lines. However, even with such a weak advance 
down the slope it accounts for approximately 0.2 Sv per 100 km. 

An analysis of the same cross sections obtained in September, when the eddy 
activity is minimal, does not reveal the distribution features characteristic of 
cascading. From this we conclude that the development of cascading stimulates 
the development of eddy activity. The mechanism of this stimulation is associated 
with the transition of the released average available potential energy into the 
potential energy of the eddy motion. The conversion rate is associated with 
baroclinic instability and can be calculated according to the simulation results 
using the formula from [44]: 

2

2
0

ρ ρ'ρ ' 'ρ '
ξ ηρ

gBC u v
N

 ∂ ∂
= − + ∂ ∂ 

, 

where 2N  is Brunt–Väisälä frequency for average density ρ , and ρ ', ', 'u v values 
are the mesoscale pulsations of density and horizontal velocity components. 
In order to calculate this velocity, during the modeling the average values of not 
only the velocity and density , , ρu v  but also of their covariances ρu  and ρv  were 
recorded so that after the model run it would be possible to calculate 

'ρ' ρ ρu u u= −  and 'ρ ' ρ ρv v v= − .  
In Fig. 6, in addition to the relative vorticity and velocity field, the contours of 

ВС value integrated in the upper 250 m layer are also represented. In this case, red 
contours encircle the zones of positive energy conversion with an intensity of more 
than 10–3 W/m2 (i.e. the transition of the average potential energy to potential 
energy of eddy motions), and blue contours – the zones of the reverse transition. 
It is noteworthy that the previously noted eddy activity during the period of 
possible cascading also coincides with active transitions in the energy spectrum. 

It should also be noted that the localization of extreme regions of the relative 
vorticity and BC conversion rate coincide. This can be explained by the fact that 
the active eddy movement in the areas of the inclined bottom leads to an increase 
in the ageostrophic component of the movement, i.e. the movement across 
the isobath lines. In its turn, this enhances the cascading process (if necessary 
prerequisites are present) namely, the formed anomaly of dense water in the area of 
the coastal shallow. The presence of dense water at the top of the slope is a source 
of available potential energy, which, in turn, feeds the eddy processes on the slope. 

In order to assess how interconnected the eddy processes are with cascading, 
we consider the integral value of the relative vorticity RV and the mass flux MF, 
associated with cascading, as quantities characterizing these processes. The first is 
the integral of the relative vorticity: 

1

2Ω

ζ ,ˆ  Ω
z

z

RV dz d
−

−

= ∫ ∫  
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where 1 2,z z  is a depth range covering the most active movement; Ω  is a region of 
eddy activity. As Ω  we take zone A and a depth range, according to Fig. 7, 
100-250 m. Since the integral (according to the Stokes theorem) is equal to 
the velocity circulation along the region’s contour and does not give a complete 
picture of the eddy field structure inside the region, it is convenient to represent it 
in the form of two terms: 

1 1

2 2Ω Ω

ζ  Ω ζ Ωˆ  ,ˆ  
z z

z z

RV RV RV dz d dz d
+ −

− −
+ −

− −

= − = −∫ ∫ ∫ ∫  

where Ω+  and Ω−  are two subregions Ω , so that Ω Ω Ω+ −= ∪ , at the same time

Ω+  represents a set of points in which ζ̂ 0,>  and Ω−  is a set of points in which 

ζ̂ 0.<  
As the cascading process is related to the motion along the inclined bottom,

gradient s of ocean depth H is the main parameter:

2 2

, , ,
ξ η ξ η
H H H Hs H s

     ∂ ∂ ∂ ∂
= ∇ = = +     ∂ ∂ ∂ ∂     



  

( )ξ η, , / ,
ξ η
H Hn n n s

 ∂ ∂
= =  ∂ ∂ 

  

( )η ξ, ,l n n= −


 
where n  is a unit vector perpendicular to the isobath lines and directed towards
the increasing depth of the ocean; l



 is a unit vector perpendicular and directed 
along the isobaths so that the deeper regions remain on the left. 

We consider the projection of the velocity vector on the perpendicular and 
tangent directions with regard to the isobath lines: 

( ) ξ η  ,nu u n u n v n= ⋅ = +
 

( ) η ξ  .lu u l u n v n= ⋅ = −




 
 

Accordingly, the elementary increments along n  and l


 are equal to 

( ) ( )2 2
ξ ηξ η ,nds d n d n= +  

( ) ( )2 2
η ξξ η .lds d n d n= +  
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Using these notations, dMF mass flow causing by cascading can be represented in 
each model box as 

  .
ch

n l
H

dMF u ds dz
−

−

= ∫  

When determining the boundaries of vertical integration, the criterion [43] is used: 

( )
0;

    ,ρ s
ε 

ρ

nu >

∇ ⋅

>






where, in contrast to the mentioned work, the quantity ε was taken equal to 0 
instead of 2∙10–8. Summing up all the boxes from Ω, we obtain the total value of 
MF in this region. 

The time series of RV+, RV – and MF obtained in such a way, are given in 
Fig. 8. It can be seen that the greatest eddy activity in zone A occurs in March, and 
the positive eddies are 1.5–2 times more intense. Such activation occurs precisely 
at the end of winter (when the area covered with ice is maximal) and it cannot be 
caused by direct atmospheric exposure. There is also no reason, due to the seasonal 
nature, to intensify the main stream of Atlantic waters and increase its barotropic 
instability as a mechanism for the formation of mesoscale eddies. Therefore, 
the formation of dense waters in the area of wind polynya near the shores of 
the Novaya Zemlya northern part is the most likely source of eddy energy. It is in 
March that the cascading process begins in the coastal region. The velocities of 
regular movement and volumes of dense masses at the initial stage are still small. 
Therefore, the main mechanism of propagation is eddy activity. In subsequent 
periods, the development leads to the formation of regular movements and eddy 
activity decreases. 

F i g.  8. Temporal variability of the motion integral characteristics in zone A: a – solid line denotes 
the integral of positive values of relative vorticity, RV+, dashed line – the integral of negative values 
of relative vorticity, RV –; b – mass flow rate of water (kg/s) involved in cascading, MF  
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The resulting picture suggests that the processes of eddy formation in this 
region and cascading are closely related to each other. The formation of dense 
water as a result of young ice freezing in the polynya area and its ageostrophic 
movement towards the relief inclination leads to the formation of mesoscale eddies 
fueled by the released potential energy. On the other hand, mesoscale eddies 
developing in an area with inclined bottom inevitably enhance the water exchange 
in the direction perpendicular to the isobath line, which, in its turn, leads to 
the further cascading development. However, cascading reaches its maximum 
intensity in late summer when the formed anomalies of dense water are picked up 
by regular currents. Possible processes that also contribute to the development of 
cascading at this stage are submesoscale eddies (the maximum activity of which 
occurs in July [45]), eddy motions localized in the jet region and also transport in 
the near-bottom Ekman layer. 

Conclusions 
Using the mathematical modeling method we studied the processes of dense 

bottom water formation in winter near the Novaya Zemlya northwestern coast and 
its distribution into the open ocean. Using the system of SibCIOM and SibPOM 
nested models the cascading process is reconstructed in detail. It is shown that at 
the initial stage cascading is accompanied by an active process of eddy formation. 
Both processes interact energetically and contribute to an increase in heat and mass 
transfer between the shelf and the open ocean. Previously obtained conclusion that 
the adequate reproduction of intermediate and deep water formation of the Arctic 
Ocean is determined by the correct description of these exchanges is confirmed. 
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