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Abstract 
Purpose. The work is aimed at numerical studying and describing the wave effects arising from 
the counter-interaction of different polarity single pulses within the framework of the Boussinesq type 
equation system with regard to dispersion in a constant depth basin. 
Methods and Results. To simulate the scenarios of the long wave pulse interaction, the CLAWPACK 
software package was used. It included the hybrid method for numerical solving the equation system 
which, in its turn, comprised the method of finite volumes and finite differences. The results were 
compared to the numerical solutions obtained earlier by using a non-dispersive nonlinear system of 
shallow water equations. 
Conclusions. The fundamental wave phase shift is studied in its interaction with the counter-
propagating pulses of different polarity. It is shown that the phase shift increases with the initial pulse 
amplitude growth. The dispersion influence is manifested in a single wave transformation into an 
undular bore. The study novelty consists in detecting and demonstrating such nonlinear effects as 
the phase shifts in the long wave counter-interaction within the framework of the nonlinear shallow 
water numerical model including the dispersion terms. 
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Introduction 
Catastrophic waves (tsunamis and storm surges) are long waves, thus long-wave 

models are widely used to study their propagation. Owing to the use of conservation 
laws that allow shock fronts to be taken into account, the hyperbolic system of 
nonlinear shallow water equations has become a standard mathematical model for 
simulation of long tsunami wave propagation and runup in coastal areas [1–5]. 

The theory of shallow water does not consider the dispersion of waves, which, 
nevertheless, turns out to be significant when long waves of the tsunami type 
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propagate over long distances [6–8]. It is taken into account in the framework of 
the so-called Boussinesq equations, in particular, the Green – Naghdi system [9, 10]. 
It should be noted that the Boussinesq equations are not derived exactly from 
the original Euler equations. There are many types of Boussinesq equations [11–13] 
that have been used to solve specific problems in the field of marine hydraulic 
engineering and coastal oceanography [8, 14, 15]. 

The counter interaction of waves in shallow water was studied within 
the framework of the “pure” theory of shallow water [16, 17] and Boussinesq 
equations [18, 19]. It was shown that, compared with the linear theory, 
the nonlinearity in the wave height leads to a greater increase at the moment of 
collision, especially in the interaction of solitons having limiting amplitude. Phase 
shift effects in the interaction of nonlinear waves were not considered in this case. 
The present paper is devoted to the numerical study and description of wave effects 
arising from the counter-interaction of different polarity single pulses within 
the framework of the Boussinesq type equation system with regard to dispersion in 
a constant depth basin. Numerical calculations were carried out using 
the BOUSSCLAW computer system for Boussinesq equations [20]. 

 
Mathematical model 

The Boussinesq system in the form proposed in [20] was chosen as the initial 
equations for the wave counter-interaction analysis: 

 

𝐻𝐻𝑡𝑡 + (𝐻𝐻𝐻𝐻)𝑥𝑥 = 0,     (1) 
 

(1 −𝐷𝐷)[(𝐻𝐻𝐻𝐻)𝑡𝑡] + (𝐻𝐻𝐻𝐻2 + 𝑔𝑔
2
𝐻𝐻2)𝑥𝑥 − 𝑔𝑔𝐻𝐻ℎ𝑥𝑥 − 𝐵𝐵𝑔𝑔ℎ2(ℎη𝑥𝑥)𝑥𝑥𝑥𝑥 = 0.  (2) 

 

Here H(x, t) = h(x) + η(x, t) is the total water depth; η(x, t) is the water surface shift; 
h(x) is the undisturbed water depth; 𝐻𝐻(x, t) is the depth-averaged horizontal flow 
velocity; g is the gravitational constant. The D operator for any w(x, t) is defined 
using the auxiliary variable w(x, t) as follows: 
 

𝐷𝐷(𝑤𝑤) = �𝐵𝐵 + 1
2
� ℎ2𝑤𝑤𝑥𝑥𝑥𝑥 −

1
6
ℎ3(𝑤𝑤

ℎ
)𝑥𝑥𝑥𝑥.    (3) 

The dispersion B parameter is chosen to be 1/15 [20], while the linear dispersion 
relation value, which follows from the Boussinesq equations, better corresponds to 
the exact relation for water waves. At B = 0 and D = 0, the system of equations (1) – 
(2) transforms into the known nonlinear system of shallow water. 

All numerical experiments were carried out using the CLAWPACK software, 
more precisely, its BOUSSCLAW add-on (www.clawpack.org). 
The BOUSSCLAW computing package uses a hybrid method for the numerical 
solution of the system of equations (1) – (2), including the method of finite volumes 
and finite differences. In particular, the finite volume method is used for the non-
linear part of the equations and finite difference discretization with fractional steps 
for additional terms, such as the standard and higher order variance terms. 

In the present study, a pool of constant depth h = 1 m and a length of 1000 m 
was used. The boundary conditions at the computational domain ends were the free 
drift conditions formulated strictly without taking into account dispersion, but in fact, 
the numerical calculation stopped until the moment when the wave approached 
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the computational domain edge. The spatial step value was 0.16 m, the time step was 
selected automatically, taking into account the Courant–Friedrichs–Levy stability 
criterion [21].  

At the initial moment of time, one or two Gaussian pulses were given 
 

𝐻𝐻(𝑥𝑥, 0) = ℎ + 𝐴𝐴 exp[ − β(𝑥𝑥 − 𝑥𝑥1)2] + 𝐴𝐴2 exp[ − β(𝑥𝑥 − 𝑥𝑥2)2]      (4) 
 

having length ∼ 120 m (β = 0.002 m–2) near the sole. The pulses are separated in 
space (x1 = 150 m, x2 = 350 m). The amplitudes of A and A2 pulses are assumed to 
be identical in module but may differ in signs (Fig. 1). This makes it possible to study 
the interaction of waves in the form of a crest and in the form of a trough, while 
the nonlinear effects for them are manifested in different ways. The flow velocity at 
the initial moment of time is equal to zero, so the initial impulse is divided into two 
symmetrical waves running in opposite directions and having amplitudes twice as 
small as the initial one. The initial amplitudes of the A and A2 waves vary from 0.1 
m (weak non-linearity) to 1 m (strong non-linearity). 
 

 
 

F i g.  1. Initial form and location of pulses 
 

Interaction of small amplitude waves  
At a small wave amplitude (0.1 m), each pulse breaks up into two half-amplitude 

pulses, as follows from the linear theory. The nonlinear effects are very weak, but 
they lead to a wave profile distortion over a long time (Fig. 2). 

Dispersion has almost no effect at such distances, since a sufficiently long wave 
is given. The phase shifts are weak enough that they can be ignored. Meanwhile, 
the dynamics of the positive and negative impulses occur in different ways already 
within the small amplitude limits. As is known [22], the nonlinearity is greater in 
the trough (where the total depth is smaller) than on the crest. Therefore, the wave 
crest was deformed weaker than the base (Fig. 2, a), where dispersion-induced 
oscillations are already beginning to appear. 
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F i g.  2. The wave oscillogram at point x = 300 m with the initial amplitude 0.1 m at the positive (a) 
and negative (b) polarity 

 
Interaction of moderate amplitude waves  

In this experiment, the amplitude of the initial pulses was 0.6 m, i.e., 
the interaction took place between two incident pulses with an amplitude half that of 
the initial one. If dispersion is not taken into account (i.e., we work within 
the framework of the nonlinear theory of shallow water), then the nonlinearity will 
lead to the shock wave formation and its amplitude will decrease. In this case, 
the interaction of shock waves occurs inelastically, and phase shifts become 
noticeable, which “slow down” the incident pulse when interacting with the crest 
and “accelerate” it when interacting with the trough. 

 
F i g.  3. The wave oscillogram of the positive polarity at point x = 300 m with the initial amplitude 
0.6 m 
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F i g.  4. The wave oscillogram of the negative polarity at point x = 300 m with the initial amplitude 
0.6 m 

 
All these effects we studied earlier in the dispersionless model framework [22]. 

The dispersion model shows new effects, consisting in the appearance of large 
oscillations on the main wave body, when the so-called undular bore is formed (Fig. 
3, 4) [23, 24].  

Fig. 3 shows interaction scenarios of an incident positive polarity wave with 
counterpropagating waves. Here, the main wave amplitudes at the point x = 300 m 
slightly exceeded 0.5 m (0.53 m for the scenario of interaction with a trough, 0.52 m 
for a scenario without interaction, 0.51 m for a scenario with a crest). The difference 
in amplitude here is caused by the presence of non-linear oscillations remaining in 
the counter wave tail. The phase shift in Fig. 3 is 0.7 sec. 

Fig. 4 shows three interaction scenarios of an incident negative polarity wave 
with counterpropagating waves. Here, as in the previous case, a small difference in 
the amplitudes is observed and, at the same time, oscillations in the opposite trough 
tail are more clearly manifested (Fig. 4, dotted line up to the time of 80 sec). In this 
case, the phase shift between the scenarios is 1.5 sec, and the trough amplitude in all 
three scenarios is ∼ 0.19 m. 

 
Interaction of high amplitude waves  

In this case (the initial pulse amplitude is 0.9 m), the nonlinear and dispersion 
effects become dominant and are already noticeable at the beginning of 
the numerical experiment. Here, the process of wave decay into solitons goes much 
faster (Fig. 5, 6). 
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F i g.  5. The wave oscillogram positive polarity at point x = 300 m with the initial amplitude 0.9 m 

 

 
 

F i g.  6. The wave oscillogram of the negative polarity at point x = 300 m with the initial amplitude 
0.9 m 

 
As for phase shifts during the interaction of waves, they turn out to be 

qualitatively the same as in the previously considered scenarios. It is noted that, as 
in the previous case, with a negative polarity, the dispersion tail “stretches” behind 
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the pulse, which turns out to be ahead of the head wave front, which is observed at 
the point x = 300 m before the incident wave comes (Fig. 6). Changes in 
the amplitudes of the second and subsequent solitons are also visible. In the scenario 
of interaction with the crest, the amplitudes of the solitons following the main pulse 
are greater than in the scenario without interaction (Fig. 5), while in the case of 
interaction with the trough, on the contrary, they are smaller (Fig. 6). The phase shift 
for such scenarios was 1 sec compared to the scenario without interaction. 

When interacting with the impulse of an incident negative polarity wave 
(Fig. 6), the influence of the nonlinear dispersion tail following the trough is 
reflected in the tide gauge record by this wave arrival moment (40 sec from 
the beginning of the experiment). The amplitudes of these pulses are ∼ 0.25 m, while 
the phase shift is 2.2 sec.  

 
Conclusion 

In the present paper, six different scenarios for the propagation and counter-
interaction of different polarity pulses in the framework of Boussinesq-type 
equations with allowance for dispersion effects are considered. The results are given 
for three different initial impulse amplitudes: 0.1, 0.6 and 0.9 m. 

In the first two scenarios, a single impulse is set. It eventually breaks up into 
two symmetrical waves running in opposite directions; in the third and fourth 
scenarios, the incident pulse interacts with a wave of positive polarity (crest) running 
in the opposite direction and formed as a result of the decay of an identical shape and 
amplitude pulse; in the fifth and sixth scenarios, a similar interaction with the wave 
trough is carried out. 

The interaction of a falling small amplitude crest with different polarity pulses 
is accompanied by small phase shifts (0.2 sec). The interaction of the incident 
negative polarity wave with the crest and trough in this case, due to the greater 
nonlinearity, leads to the appearance of dispersion effects observed in the main wave 
tail. The phase shifts are also small here. 

As the amplitude increases, the effects of dispersion become stronger, especially 
for an incident negative polarity wave. Phase shifts also increase. Thus, for incident 
waves with an amplitude of 0.6 m and positive polarity, the phase shift is 0.7 sec 
compared to the scenario without interaction, and with an initial amplitude of 0.9 m it 
is 1 sec. 

The strongest nonlinear interaction is manifested for negative polarity waves, 
since the ratio of the wave amplitude to the local depth increases. In the scenario with 
an incident negative polarity wave, with an initial pulse amplitude of 0.5 m, the phase 
shifts are 1.5 sec compared to the interaction scenario, and with an amplitude of 0.9 m, 
they are 2.2 sec. 
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