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Abstract 
Purpose. The study is purposed at obtaining the approximations providing the presence of discrete 
non-linear invariants for the difference system of the sea dynamics equations in the absence of 
external forces, friction and diffusion, and at analyzing the features of the resulting schemes at 
the example of calculating the Black Sea circulation for 2011. 
Methods and Results. The method of undetermined coefficients at which the new unknowns are 
introduced is applied, that makes it possible to satisfy the additional conditions. The schemes 
providing simultaneous preservation of temperature in the first and the K-th (K > 1) degrees and 
salinity in the first and the L-th (L > 1) degrees, were obtained. The approximations of temperature 
and salinity found on the box faces with a polynomial dependence of density on temperature and 
salinity lead to a divergent form of the density advection equation. This form provides fulfilling 
the law of conservation both of the total energy and the sum of kinetic and dynamic potential energy 
in a discrete formulation. Based on the analysis of circulation in the Black Sea in 2011, it is shown 
that at increase of the degree of invariants, the following effects take place: the gradients in 
the temperature field in the frontal zones as well as the processes of the saltier water upwelling in 
the sea center and the fresher water downwelling along its periphery are intensified, and the intensity 
of small-scale features in the vertical velocity field decreases. 
Conclusions. A discrete dynamical model in a quasi-static approximation was obtained. It has 
a number of nonlinear invariants corresponding to the continuous problem. The results of calculating 
the Black Sea circulation for real conditions in 2011 showed that presence of the degree invariants 
exceeding two made it possible to specify the circulation features on small scales. 
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1. Introduction
Currently, the requirements for the accuracy of solving discrete equations of 

the dynamics of oceans and seas, which ensures the reliability of the marine 
environment condition forecast, are increasing. One of the aspects of work to 
improve numerical models of sea dynamics is due to the need to fulfill 
conservation laws for a finite-difference system of equations. This approach is 
ideologically based on the well-known Noether’s theorem [1], establishing one-to-
one correspondence between conservation laws and the properties of its solution 
for a hyperbolic system of hydrodynamic equations. It can be assumed that for 
a discrete system of equations, the conservation laws must also be strictly satisfied, 
which will increase the finite-difference solution stability and proximity to 
the exact one. 
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In [2], a difference analogue of Noether’s theorem was constructed for 
the one-dimensional Euler equation, which, due to the transition to the space of 
grid functions, differed significantly from the original in additional conditions. 
The construction of the corresponding difference schemes is closely related to 
the property of their invariance, which definition was given in [3]. The property of 
invariance under transformation groups is a necessary condition for applying 
Noether’s theorem to obtain conservation laws. Invariant difference schemes were 
built for second-order ordinary differential equations [4]. In [5], difference analogs 
for linear and nonlinear one-dimensional wave equations with symmetry conditions 
and conservation laws were obtained. For one-dimensional shallow water equations 
in Lagrangian coordinates, a new invariant finite-difference scheme was obtained. 
It has local laws of energy, mass, mass center, and momentum conservation [6]. 
When applied to computational geophysics problems, the law of total energy 
conservation is used as the norm of a discrete solution, which increases its stability. 
In [7–9], based on energy-stable schemes, the properties of the numerical solution 
of the Navier–Stokes equations were studied. Test problems demonstrated 
the accuracy and performance of the algorithms presented. A number of works 
were devoted to the CABARET scheme, which was introduced as a new three-
layer explicit difference scheme with spatial splitting of the time derivative [10]. It 
was carefully developed at a high level for the one-dimensional transport equation 
without dissipation [11, 12], which made accurate simulation of the solution 
properties to the corresponding hyperbolic equation possible. 

When solving oceanological problems, the main attention of researchers is 
focused on the calculation and analysis of difference analogs of energy 
characteristics, which are not always an exact consequence of the original discrete 
formulation and, strictly speaking, reflect model dynamics with errors. 

As an example of the energy analysis use, the following works can be 
figured out. In [13], estimates of the spatial distribution and transformation of 
eddy energy in a model ocean basin are presented. The authors show that local 
generation and dissipation of eddy energy is compensated by so-called non-
localized flows from other parts of the basin, especially along the periphery of 
eddy structures. In [14], based on an analysis of the distribution of the average 
kinetic energy of eddies calculated from satellite altimetry data, estimates of 
the spatial distribution of sources and sinks of eddy energy for actually observed 
mesoscale structures were carried out. The influence of the horizontal resolution 
of models on the description of energy cascades was studied in [15]. The authors 
prove that when calculating kinetic (KE) and potential (PE) energy budgets, 
forward and reverse energy cascades are more accurately described in a model 
that resolves structures with dimensions smaller than the baroclinic Rossby 
deformation radius. Model estimates of the seasonal variability of eddy kinetic 
energy carried out in [16], indicate that the seasonal increase in the thermal effect 
of the atmosphere causes a mesoscale variability intensification in the velocity 
field at the ocean surface. The Lorentz energy cycle analysis for the entire World 
Ocean based on reanalysis data was carried out in [17]. In this paper, the mean 
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long-term estimates of energy components were obtained and the main 
differences between the energy cycles of the ocean and atmosphere were 
presented. The methodology for estimating eddy energy and its transformation 
mechanisms, proposed by Lorenz, is widely used for regional circulation studies. 
For example, the region of the Kuroshio Current is considered in [18], eddy 
variability in the Red Sea is studied in [19], and a detailed analysis 
of the mechanisms of mesoscale eddies formation in the Sea of Okhotsk is 
presented in [20]. 

For the Black Sea, a number of studies estimated the kinetic energy of eddies 
and currents based on observational data [21, 22]. Study of annual and interdecadal 
variability of available potential energy based on observational data for 1910–
1998, was given in [23]. The energy balances of semi-enclosed seas (including 
the Black Sea) were calculated in [24]. It was also shown that the work of 
the buoyancy force was one of the main factors in the formation of mesoscale 
dynamics in semi-enclosed seas. 

The present paper reviews invariants known for the hyperbolic system of 
differential equations of hydrodynamics of an ideal fluid (absence of friction, 
diffusion, external forces, and under the assumption of adiabaticity), but not 
obtained in discrete form as an exact consequence of the finite-difference 
formulation. In [25], difference equations for the rate of change of kinetic and 
potential energy corresponding to a numerical model of dynamics on the C-grid 
were written and analyzed. In a discrete formulation, to comply with the law of 
total energy conservation, it is necessary to adequately describe the work of 
the buoyancy force in the kinetic and potential energy budget equations. Its 
approximation depends on the difference type of density, which is generally 
determined by temperature, salinity, and pressure. This paper considers the case 
of a polynomial dependence on temperature and salinity. In [26], corresponding 
approximations of density were obtained. They ensure compliance with the total 
energy law in the case of representation of density in the form of a differentiable 
functional for a number of parameters. The present paper, as a continuation 
of these studies, considers discrete invariants obtained for a numerical model of sea 
dynamics under the condition of adiabaticity, absence of friction, diffusion, and 
external forces. 

 
2. Conservation laws in differential formulation 
Let us write down the equations of the ideal fluid model in the Boussinesq 

approximation and the incompressibility of sea water: 
 

0

1(ξ ) ς ( ' ) ,
ρt z x xu f v wu g P E− + + = − − +                                   (1) 

 

0

1(ξ ) ς ( ' ) ,
ρt z y yv f u wv g P E+ + + = − − +                              (2) 
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= 0,x y zu + v + w                                                      (3) 
 

z

0 0
0

= ρ ς + ρ μ = ρ ς + ',P g g d g P∫                                   (4) 

 

( ) ( ) ( ) 0,t x y zT uT vT wT+ + + =                                  (5) 
 

( ) ( ) ( ) 0,t x y zS uS vS wS+ + + =                                  (6) 
 

ρ = G (T, S).                                                   (7) 
 

When z = 0, ςtw = − ;  

at the bottom at  z = H(x, y)  u = v = w = 0, 0.z zT S= =             (8) 
 

On the side walls:  
for meridional – 

 

0, 0,= = = =x x xu v T S                                 (9а) 
 

for zonal boundary sections – 
 

0, 0,= = = =y y yv u T S                                 (9b) 
 

Initial conditions: at t = t0 
 

(T, S) = (T0, S0),   u = u0,   v = v0,   ζ = ζ0.                                  (10) 
 

Here: 
2 2

0

1ξ , .
ρ 2x y

u vv u E +
= − =  

 

In system (1)–(10), u, v, w are the velocity vector components directed along 
axes x, y, z, respectively; T, S, P are the sea water temperature, salinity, and 
pressure; f is the Coriolis parameter; ζ is the reduced sea level; g is the free fall 
acceleration. 

In (7), G(T, S) is a polynomial of arbitrary degree depending on temperature 
and salinity. In general, the equation of state includes pressure, but many models 
use relation (7), a version of which is recommended by the Intergovernmental 
Oceanographic Commission 1. In accordance with it, conservation schemes were 
built taking into account the polynomial dependence of density on temperature and 
salinity. For the further simplification of the recording of calculations, it is assumed 
that ρ0 = 1 g/cm3. 

1 IOC, SCOR and IAPSO, 2010. The International Thermodynamic Equation of Seawater – 
2010: Calculation and use of thermodynamic properties.  Intergovernmental Oceanographic 
Commission Manuals and Guides No. 56. UNESCO, 196 p. 
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2. 1. Equations of temperature, salinity, and density advection  
The following notation is introduced: 
 

0

0 0

1, ,

1 , ,

z

z

z z

H
H

z

H H
V

dz dxdy

dxdydz V dxdydz
V

Ω

Ω

Ω Ω

< φ > = φ < φ > = φ
Ω

< φ > = φ =

∫ ∫∫

∫ ∫∫ ∫ ∫∫
 

 

where Ωz  is the horizontal surface at z-level. 
Due to the fulfillment of condition (3), equations (5) and (6) can be written in 

non-divergent form: 
 

0,t x y zT uT vT wT+ + + =                                           (11) 
 

0.t x y zS uS vS wS+ + + =                                          (12) 
 

From (3), (11), (12), and boundary conditions (8)–(9), it follows that for any 
1, 1≥ ≥K L : 

 

0,K K K K
t x y zT uT vT wT+ + + =                                        (13) 

 

0.L L L L
t x y zS uS vS wS+ + + =                                           (14) 

 

Returning to the divergent form of writing relations (13), (14) and integrating 
over the domain, the first two invariants ( 1, 1≥ ≥K L ) are obtained: 

 

0 0
0 0ς 0, ς 0.K V K L V L

t t t tT T S SΩ Ω< > + < > = < > + < > =                (15) 
 

It should be noted that the equation (15) corresponds to: 
 

0
0

ζ

1ς ( ) 0,
z

H
K V K K

t tT T T dxdydz
V t

Ω

− Ω

∂
< > + < > = =

∂ ∫ ∫∫  

 

0
0

ζ

1ς ( ) 0.
z

H
L V L L
t tS S S dxdydz

V t
Ω

− Ω

∂
< > + < > = =

∂ ∫ ∫∫  

 

Let G be a polynomial in T and S, then from expressions (11) and (12) 
the density advection equation is obtained: 

 

( ) ( ) ( )ρ ρ ρ ρ 0.t x y zu v w+ + + =                                         (16) 
 

The divergent form of expression (16) ensures the preservation of the density 

integral, similar to equation (15) – 
ζ

1 ρ 0.
z

H

dxdydz
V t − Ω

∂
=

∂ ∫ ∫∫  
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2. 2. Equations for the rate of kinetic and potential energy change  
From equations (1)–(4), the equation for the kinetic energy budget is obtained: 

[ ( ς ' )] [ ( ς ' )] [ ( ς ' )] ρ .t x y zE u g P E v g P E w g P E g w+ + + + + + + + + =     (17) 
 

From equation (17), when integrating over the basin, it follows: 
 

0

2

0
ςς ( ) ρ .
2

V V
t t tE E g gwΩ< > + < + > =< >                             (18) 

 

From the form of equations (17), (18), it can be seen that: 

0
0

ζ

1ς 0.
z

H
V

t tE E Edxdydz
V t

Ω

− Ω

∂
< > + < > = =

∂ ∫ ∫∫  

 

We assume that the potential energy has the form ρg z= −Π . Then, 
the equation for the rate of potential energy change is written as follows: 

 

( ) ( ) ( ) ρ .t x y zu v w g w+ + + = −Π Π Π Π                                  (19) 
 

From equation (19), invariant III is obtained: 
 

0

2

0
ζ

ς 1ς ( ) ( ) 0.
2

z

H
V

t t t tE E g E dxdydz
V t

Ω

− Ω

∂
< + > + < + > = + =

∂ ∫ ∫∫Π Π     (20) 

 
2. 3. Equations for the rate of dynamic potential energy change  
An important physical characteristic of the sea and atmosphere dynamics is 

available potential energy, which was introduced by E. Lorenz in [27]. The integral 
energy, just like the total energy, under the condition that the processes are 
adiabatic, is conserved, or it is an invariant. Due to the state equation nonlinearity, 
ambiguity in determining the available potential energy takes place (in [27], 
a linear dependence of density on temperature was assumed). Therefore, in recent 
years, a number of works used the potential energy anomaly – dynamic potential 
energy – to analyze the results of numerical experiments [28]. 

In the continuous case, we assume that: 
 

                                          ρ( , , , ) ρ ( , , , ) ρ ( ),Sx y z t x y z t z∗= +   

                                   where 
τ

1 1ρ ( ) ρ( , , , ) ,
τ

z

s

z

z x y z t dxdy dt
Ω

 
=   Ω 
∫ ∫∫                  (21) 

 

τ is the integration time. In contrast to the definition given in [29], equation (21) 
assumes that ρs is independent of time.  

Let us introduce the notations: *ρ .peD g z= −  
Taking into account the continuity equation, substituting expansion (21) into 

expression (16), we obtain: 
 

ρ ρ ρ ρ ρ 0.s
t x y z zu v w w∗ ∗ ∗ ∗+ + + + =                                   (22) 
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Transforming expression (22), the dynamic potential energy equation is 
obtained: 

 

( ) ( ) ( ) ( )ρ ρ 0.pe pe pe pe S
t x y z

D uD vD wD gzw g w∗+ + + − + =            (23) 
 

Due to the absence of flows through the basin sides, taking into account 
expression (23), invariant IV is obtained: 

 

0

2

0
ζ

ς 1ς ( ) ( ) 0.
2

z

H
pe V pe

t t t tE E D g E D dxdydz
V t

Ω

− Ω

∂
< + + > + < > = + =

∂ ∫ ∫∫     (24) 

 
3. Conservation laws in a discrete model 
We approximate a basin with an uneven bottom by boxes with centers 

corresponding to integer index values i, j, k (i = i1,…, iN, j = j1,…, jM,  k = 1,…, Ki,j), 
edges – i + 1/2, j + 1/2, k + 1/2. The horizontal dimensions of boxes ( yx hh , ) are 

constant; vertically, uneven approximation  
( 1/2

1/2 1/2 1,k k+
z k+ k- z k+ kh = z - z h = z - z ) is used. 

Difference operators have the form (similarly for j, k ) 
 

1/2 1/2 1/2 1/2δ δ δ
2

x i+ , j,k i- , j,k i+ , j,k i- , j,k 2 2 2
i, j,k x i, j,k x,y i, j,k x i, j,k y i, j,k

x

+ -
= , = , = + ,

h
φ φ φ φ

φ φ ∇ φ φ φ

(25) 
 

, ,

, , , ,
, , 1 , 1

1 1{ } , { } , .
i j i j

k

K K
V k k

i j k x y i j k z x y z x y
i j i j k i j kk

h h h h h V h h h
V

Ω

= =

φ = φ φ = φ =
Ω ∑ ∑ ∑ ∑ ∑  

 

At horizons zk, temperature, salinity, and horizontal velocity components are 
calculated, at horizons zk+1/2 – vertical velocity [25]; Ωk is surface area at horizon 
zk. The distribution of variables is shown in Fig. 1. 

Let us consider equations that are continuous in time. A finite-difference 
system of model equations with second-order accuracy in spatial variables (up to 
a non-uniform step) was written out repeatedly [25]. 

 
3. 1. Invariants of differential-difference equations of temperature, 

salinity, and density advection  
Let us write the state equation at point (i, j, k) as a polynomial: 
 

, , , , , , , , , , , , ,
0 0

,ρ ( ) ,
N M

n m
i j k i j k i j k i j k n m i j k i j k

n m
a T SG T S G

= =

== = ∑∑                     (26) 

 

where ,0, 0,≥ ≥ n mn m a  are the constants. Note that N, M do not have to be 
integers. 

 
PHYSICAL OCEANOGRAPHY   VOL. 30   ISS. 5   (2023) 529 



 

 
 

F i g.  1. Distribution of variables in box (i, j, k) 
 
To preserve the spatial integral of the density under the condition of 

adiabaticity and the absence of external sources, it is necessary to obtain an 
approximation of the nonlinear terms in such a way that, along with T and S, TK 
and SL are preserved, respectively: 

 

ζ ζ

1 1( ) 0, ( ) 0
z z

H H
K LT dxdydz S dxdydz

V t V t− Ω − Ω

∂ ∂
= =

∂ ∂∫ ∫∫ ∫ ∫∫                    (27) 

 

As a result, the volume integral of each member of series (26) is limited due to 
the positive temperature and salinity. 

The continuity equation in discrete form at point (i, j, k), taking into account 
notation (25), has the form: 

 

, , , , , ,δ δ δ 0.x i j k y i j k z i j ku v w+ + =                                     (28) 
 

To derive the corresponding approximations that ensure the preservation of 
two moments, the first and the highest ones, the following method is used. 
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Let us introduce new unknowns 1/2, , 1/2, , 1/2, ,, , ,i j k i j k i j kT S ρ+ + +  at points (i+1/2, j, k), at 

points (i, j +1/2, k) – , 1/2, , 1/2, , 1/2,, , ,i j k i j k i j kT S ρ+ + +  at points (i, j, k + 1/2) – 

, , 1/2 , , 1/2 , , 1/2, ,ρ .i j k i j k i j kT S+ + +  
Let us write down the equations of temperature and salinity advection at point 

(i, j, k): 
 

, ,
, , , , , , , , , , , ,δ ( ) δ ( ) δ ( ) 0,i j k

x i j k i j k y i j k i j k z i j k i j k

dT
u T v T w T

dt
+ + + =                 (29) 

 

, ,
, , , , , , , , , , , ,δ ( ) δ ( ) δ ( ) 0.i j k

x i j k i j k y i j k i j k z i j k i j k

dS
u S v S w S

dt
+ + + =                (30) 

 

Further, all reasoning and calculations carried out for temperature will be 
identical for salinity. Note that 1,2, , , 1/2, , , 1/2, ,+ + +i j k i j k i j kT T T  

and 1,2, , , 1/2, , , 1/2, ,+ + +i j k i j k i j kS S S  have not been determined yet. 
Taking into account discrete continuity equation (28), equation (29) is 

rewritten in the following form: 
 

( ) ( ), , 1
1/2, , 1/2, , , , 1/2, , 1/2, , , ,

−
+ + − −

 + − − − + 
i j k

i j k i j k i j k i j k i j k i j k x

dT
u T T u T T h

dt
 

( ) ( ) 1
, 1/2, , 1/2, , , , 1/2, , 1/2, , ,i j k i j k i j k i j k i j k i j k yv T T v T T h−
+ + − −

 + − − − +   

( ) ( ) ( ) 1

, , 1/2 , , 1/2 , , , , 1/2 , , 1/2 , ,
k

i j k i j k i j k i j k i j k i j k zw T T w T T h
−

+ + − −
 + − − −  = 0.     (31) 

 

In a similar way, we proceed with equation (30). Let functional Q, for 
example, on temperature and its derivative be written as follows: 

 

', , , ,
, , , , , , , , , ,

,

'

,

( ), , where .i j k i j k
i j k i j k i j k i j k i j k

i j k

i, j,kdQ dT dQ
Q T QQ Q

dt dt dT
= ==  

 

We multiply equation (31) by '
, ,i j kQ and transform the result taking into 

account continuity equation (28). We get the equation for , ,i j kQ : 
 

( ) ( ){ }, , ' ' 1
1/2, , , , , , 1/2, , , , 1/2, , , , , , , , 1/2, ,

i j k
i j k i j k i j k i j k i j k i j k i j k i j k i j k i j k x

dQ
u Q Q T T u Q Q T T h

dt
−

+ + − −
   + + − − − − +   

 

( ) ( ){ }' ' 1
, 1/2, , , , , , 1/2, , , , 1/2, , , , , , , , 1/2,

−
+ + − −

   + + − − − − +   i j k i j k i j k i j k i j k i j k i j k i j k i j k i j k yv Q Q T T v Q Q T T h  

( ) ( ){ }( ) 1' '
, , 1/2 , , , , , , 1/2 , , , , 1/2 , , , , , , , , 1/2 0.k

i j k i j k i j k i j k i j k i j k i j k i j k i j k i j k zw Q Q T T w Q Q T T h
−

+ + − −
   + + − − − − =   

 

(32.1) 
 

Assume that , ,i j kQ  satisfies the advection equation, which is written in 
the form: 
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, , 1
1/2, , , , 1/2, , 1/2, , , , 1/2, ,

1
, 1/2, , , , 1/2, , 1/2, , , , 1/2,

, , 1/2 , , , , 1/2 , , 1/2 , , , ,

[( ) ( ) ]

[( ) ( ) ]

[( ) ( )

i j k
i j k i j k i j k i j k i j k i j k x

i j k i j k i j k i j k i j k i j k y

i j k i j k i j k i j k i j k i j

dQ
Q Q u Q Q u h

dt
Q Q v Q Q v h

Q Q w Q Q w

−
+ + − −

−
+ + + − −

+ + −

+ − − − +

+ − − − +

+ − − − 1
1/2

, , , , , , , ,

]( )

(δ δ δ ) 0.

k
k z

i j k x i j k y i j k z i j k

h

Q u v w

−
− +

+ + + =

  

(32.2)

 

 

Then from equations (32.1) and (32.2), an expression, e.g., for 1/2, ,i j kT +  

(similarly for  , 1/2, , , 1/2,+ +i j k i j kT T ) is obtained: 
 

( ) ( )' '
1, , 1, , 1, , , , , , , ,

1/2, , ' '
1, , , ,

.i j k i j k i j k i j k i j k i j k
i j k

i j k i j k

Q T Q Q T Q
T

Q Q
+ + +

+
+

− − −
=

−
 

 

Assume that , ,, ,=k
K

i kj jiQ T . Then temperature (salinity in the same way) is 
approximated on the sides of box ( , , )i j k as follows:  

 

1, , , , , 1, , ,
1/2, , , 1/2,1 1 1 1

1, , , , , 1, , ,

1 1, , + +
+ +− − − −

+ +

   − −− −
= =      − −   

K K K K
i j k i j k i j k i j kK K

i j k i j kK K K K
i j k i j k i j k i j k

T T T TK KT T
K T T K T T

 

, , 1 , ,
, , 1/2 1 1

, , 1 , ,

1 ,+
+ − −

+

 −−
=   − 

K K
i j k i j kK

i j k K K
i j k i j k

T TKT
K T T

                                  (33) 

 

in case , ,, ,=k
L
i kj ji SQ  1, , , ,

1/2, , 1 1
1, , , ,

1 ,
L L
i j k i j kL

i j k L L
i j k i j k

S SLS
L S S

+
+ − −

+

 −−
=   − 

                           

, 1, , ,
, 1/2, 1 1

, 1, , ,

1 , 
L L
i j k i j kL

i j k L L
i j k i j k

S SLS
L S S

+
+ − −

+

 −−
=   − 

, , 1 , ,
, , 1/2 1 1

, , 1 , ,

1 +
+ − −

+

 −−
=   − 

L L
i j k i j kL

i j k L L
i j k i j k

S SLS
L S S

. 

In case of hydrostatic instability of the fluid column, convective mixing 
procedure is used. It leads to temperature and salinity equalization at adjacent 
horizons. The relationships on the vertical sides of the box, which follow from 
equation (33), can be used: 

 
 

1 1
, , 1 , , 1

, , 1/2 , , , , 1/2 , ,
, , 1 , , , , 1 , ,

1 1, ,
( , ) ( , )

− −
+ +

+ +
+ +

   − −
= + = +      Φ Ψ   

K L
i j k i j k

i j k i j k i j k i j k
i j k i j k i j k i j k

T SK LT T S S
K T T L S S

(34) 
 

where  

( )
2

2
, , 1 , , , , 1 , ,

0
, ,

−
− −

+ +
=

Φ = ∑
K

K n n
i j k i j k i j k i j k

n
T T T T ( )

2
2

, , 1 , , , , 1 , ,
0

, .
−

− −
+ +

=

Ψ = ∑
L

L m m
i j k i j k i j k i j k

m
S S S S  
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Thus, from the approximations of expressions (33) and (34), it follows that 
when integrating over the entire domain, T, S and TK, SL (K ≥ 2, L ≥ 2) are 
preserved, that is, the following conservation laws are satisfied: 

 

0 0

, , , , , ,
, ,1/2 , ,1/2

ς ς
0, 0.

V VK L
i j k i j i j k i jK L

i j i j

dT d dS d
T S

dt dt dt dt

Ω Ω         + = + =       
         

 

 

These expressions correspond to integrals (27) (invariants I and II). 
To ensure the total energy conservation law, it is necessary to describe 

the buoyancy force work adequately in the equations for the rate of kinetic and 
potential energy change. For this purpose, it is necessary to obtain an equation for 
density from heat and salt advection equations (29), (30), taking into account 
the fulfillment of relations (33) and (34), which should have a divergent form. 

Let the density advection equation be written in the form in which 
1/2, , , 1/2, , , 1/2ρ ,ρ ,ρi j k i j k i j k+ + +  are the unknowns: 

 

, ,
, , , , , , , , , , , ,

ρ
δ ( ρ ) δ ( ρ ) δ ( ρ ) 0.i j k

x i j k i j k y i j k i j k z i j k i j k

d
u v w

dt
+ + + =                (35) 

 

Density in point (i, j, k) has the form , , , , , , , ,ρ ( , ).i j k i j k i j k i j kT SG=   
We believe the following to be fulfilled: 

( ) ( ) ( ) ( ), , , ,
, , , , , , , ,

, , , ,

' ' ' ', , , , , ,ρ
, where , .i j k i j k

i j k i j k i j k i j k
i j k i

i j k i j k i j k

T S
k

T
j

S

d dT dS dG dG
G G G G

dt dt dt dT dS
= + = =

 
 

We multiply equations (29) by (Gi,j,k)́T and (30) by (Gi,j,k)́S. Carrying out 
the appropriate transformations, taking into account continuity equation (28) and 
the requirements of the divergent form of equation (35), we obtain the relation, for 
example, for 1/2, ,ρi j k+  (for , 1/2, , , 1/2ρ ,ρi j k i j k+ +  – similarly) 

 

' ' ' '
1, , ) , , ) 1, , 1, , , , , ,

1/2, , 1/2, ,

( ) ( ) ( ) ( )
ρ

2
i j k T i j k T i j k T i j k i j k T i j k

i j k i j k

G G G T G T
T + + +

+ +

  + +
= − +      

 

 
 

' ' ' '
1, , ) , , ) 1, , 1, , , , , , 1, , , ,

1/2, ,

( ) ( ) ( ) ( )
.

2 2 2
i j k S i j k S i j k S i j k i j k S i j k i j k i j k

i j k

G G G S G S G G
S + + + +

+

  + + +
+ − +      

 

(36) 
 

The divergent form of the density advection equation, as a consequence of 
equations (29), (30), is provided by approximating the density on the box sides in 
the form of formula (36). 

In general, 1/2, , , 1/2, , , 1/2ρ ,ρ ,ρi j k i j k i j k+ + +  should have the form: 
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1, , , , 1 1
1/2, , , 1 1/2, , 1/2, ,1 1

1 11, , , ,

1ρ
K K N M xi j k i j k n m

i j k n m i j k i j kK K
n mi j k i j k

T TK a nT S
K T T

+ − −
+ − + +− −

= =+

−−
= +

− ∑∑  

1, , , , 1 1
1, 1/2, , 1/2, ,1 1

1 11, , , ,

1
, 1 1/2, , 1/2, ,

1 1

1

(

L L N M xi j k i j k n m
n m i j k i j kL L

n mi j k i j k

N M x
n m

n m i j k i j k
n m

S SL a mT S
L S S

a nT S

+ − −
− + +− −

= =+

−
− + +

= =

−−
+ −

−

− +

∑∑

∑∑
 

1
1, 1/2, , 1/2, , , 1/2, , 1/2, ,

1 1
) ,

N Mx x
n m n m

n m i j k i j k n m i j k i j k
n m

a mT S a T S−
− + + + +

= =

+ +∑∑                 (37а) 

 

1, , , , 1 1
, 1/2, , 1 , 1/2, , 1/2,1 1

1 11, , , ,

1ρ
K K N M yi j k i j k n m

i j k n m i j k i j kK K
n mi j k i j k

T TK a nT S
K T T

+ − −
+ − + +− −

= =+

−−
= +

− ∑∑  

, 1, , , 1 1
1, , 1/2, , 1/2,1 1

1 1, 1, , ,

1
, 1 , 1/2, , 1/2,

1 1

1

(

L L N M yi j k i j k n m
n m i j k i j kL L

n mi j k i j k

N M y
n m

n m i j k i j k
n m

S SL a mT S
L S S

a nT S

+ − −
− + +− −

= =+

−
− + +

= =

−−
+ −

−

− +

∑∑

∑∑
 

1
1, , 1/2, , 1/2, , , 1/2, , 1/2,

1 1
) .

N My y
n m n m

n m i j k i j k n m i j k i j k
n m

a mT S a T S−
− + + + +

= =

+ +∑∑                  (37b) 

 

, , 1 , , 1 1
, , 1/2 , 1 , , 1/2 , , 1/21 1

1 1, , 1 , ,

1ρ
K K N M zi j k i j k n m

i j k n m i j k i j kK K
n mi j k i j k

T TK a nT S
K T T

+ − −
+ − + +− −

= =+

−−
= +

− ∑∑  

, , 1 , , 1 1
1, , , 1/2 , , 1/21 1

1 1, , 1 , ,

1
, 1 , , 1/2 , , 1/2

1 1

1

(

L L N M zi j k i j k n m
n m i j k i j kL L

n mi j k i j k

N M z
n m

n m i j k i j k
n m

S SL a mT S
L S S

a nT S

+ − −
− + +− −

= =+

−
− + +

= =

−−
+ −

−

− +

∑∑

∑∑
 

1
1, , , 1/2 , , 1/2 , , , 1/2 , , 1/2

1 1
) .

N Mz z
n m n m

n m i j k i j k n m i j k i j k
n m

a mT S a T S−
− + + + +

= =

+ +∑∑                   (37c) 

 

From expressions (33), (34), it follows that when integrated over the entire 
region, , ,i j kT and , ,

K
i j kT , , ,i j kS  and , ,

L
i j kS  remain unchanged. Note that relations 

(37) do not depend on the conservation scheme for temperature and salinity in 
a certain sense. Namely: formulas (33) and (37a)–(37c) can contain different values 
of , , ,N M K L . For example, the approximation of the temperature advection 

equation ensures conservation of LT  (expression (33)), expressions (37) lead to 
a divergent form of the density advection equation, and the equation of state has 
the highest degree of T equal to N. 
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Thus, approximations (37a)–(37c) provide a divergent form of density 
advection equation (35) and satisfy 

 
0

, , ,
, ,1/2

ρ ς
ρ 0,

V

i j k i j
i j

d d
dt dt

Ω     + =   
    

corresponding to 
ζ

1 (ρ) 0
z

H

dxdydz
V t − Ω

∂
=

∂ ∫ ∫∫  

(invariant III). 
Note that, in contrast to the CABARET scheme [11, 12], approximations of 

temperature, salinity, and density ensure the fulfillment of the corresponding 
conservation laws and have a “nonlinear” form of (30), (37a)–(37c). On the edges 
of the box, relations (33) and (37) involve the T and S values at only two points. 

Analysis of the derivation of relations (36) shows that the obtained result is 
easily generalized to the general case of dependence of G on r (r = 1,..., R, where R 
is an integer) of Fr functions: 

 

1 2( ).R
i, j,k i, j,k i, j,k i, j,kG = G F ,F ,...,F                                      (38) 

 

Let G be a differentiable functional for each Fr  

r
i, j,k'
rF

i, j,k

dG
G

dF
≡ , 

and corresponding derivatives are limited. It is assumed that each Fr at point (i, j, k) 
satisfies the advection equation: 
 

δ δ δ 0
r

i, j,k r r r
x i, j,k i, j,k y i, j,k i, j,k z i, j,k i, j,k

dF
+ u F + v F + w F = ,

dt
                           (39) 

 

where r = 1, …, R. For each equation (39) (r = 1, …, R), carrying out 
the corresponding transformations, the following is obtained: 

-1 -1
1/2 1/2 1/2 1/2

-1 -1
1/2 1/2 1/2 1/2

-1
1/2 1/2

( ) ( )

+( ) ( )

+( ) ( ) (

r
i, j,k r r r r

i+ , j,k i, j,k i+ , j,k x i- , j,k i, j,k i- , j,k x

r r r r
i, j+ ,k i, j,k i, j+ ,k y i, j- ,k i, j,k i, j- ,k y

r r k
i, j,k+ i, j,k i, j,k+ z i,

dF
+ F - F u h - F - F u h +

dt
F - F v h - F - F v h +

F - F w h - F -1
1/2 1/2) ( )

(δ δ δ ) = 0.

r r k
j,k - i, j,k i, j,k - z

r
i, j,k x y z i, j,k

- F w h +

+F u + v + w

          (40) 

 

The following relation holds: ( ) r

r
i, j,k i, j,k'

i, j,k F
r

dG dF
= G .

dt dt∑ Then, after 

transforming equation (40), taking into account definition (38), multiplying it by 
r

'
F

G and summing the attained result, we have: 
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-1 -1
1/2 1/2 1/2 1/2

-1 -1
1/2 1/2 1/2 1/2

1/2 1/

( ) [( ) ( )

+( ) - ( )

+( )

r
i, j,k ' r r r r

i, j,k i+ , j,k i, j,k i+ , j,k x i- , j,k i, j,k i- , j,k xA
r

r r r r
i, j+ ,k i, j,k i, j+ ,k y i, j- ,k i, j,k i, j- ,k y

r r
i, j,k+ i, j,k i, j,k+

dG
+ G F - F u h - F - F u h +

dt
F - F v h F - F v h +

F - F w

∑

-1 -1
2 1/2 1/2( ) ( ) ( )

(δ δ δ )] 0.

k r r k
z i, j,k - i, j,k i, j,k - z

r
i, j,k x i, j,k y i, j,k z i, j,k

h - F - F w h +

+F u + v + w = (41)

 

Assume that the advection equation holds for functional G. Taking into 
account expression (41), a recurrence relation for G on sides (i + 1/2, j, k) of box (i, 
j, k) (for 1/2i, j+ ,kG  and 1/2i, j,k+G – similarly) is obtained: 

 

+1 11
1/2 1/2

( ) ( )
2 2

r r

r

' ' r ' r
i , j,k i+ , j,k i, j,k i, j,ki+ , j,k i, j,kr F F

i+ , j,k i+ , j,k
r F

G F + G FG + G
G = F - +

 
     

 
∑

 

2
i+1, j,k i, j,kG + G

+ .                                                                                                   (42) 
 

This relation can be interpreted as a finite-difference analogue for functional G 
on the sides of box (i, j, k). Approximation (42) leads to a divergent form of 
the advection equation of functional G: 

 

δ δ δ 0i, j,k
x i, j,k i, j,k y i, j,k i, j,k z i, j,k i, j,k

dG
+ u G + v G + w G =

dt
 

 

and, thereby, ensures that the volume integral of G is equal to zero. The resulting 
property exactly corresponds to the continuous formulation. Note that difference 
relation (42) does not depend on specific form 1/2 1/2 1/2.r r r

i+ , j,k i, j+ ,k i, j,k+F , F , F . 
As an example, the equation of state from work 1 is given in the form: 

5 2

, , , , , ,
0 0

.n m
i j k nm i j k i j k

n m
a T S

= =

ρ =∑∑                                             (43) 

 

In accordance with equation (43), it is required that in the adiabatic 
approximation and the absence of external forces, the volume integrals of 5

, ,i j kT and 
2
, ,i j kS do not change with time. Then expression (37a), taking into account 

expression (43), is written in the form (for ,j k similarly): 
 

4 3 2 2 3 4 5
1, , 1, , , , 1, , , , 1, , , , , ,

1/2, , ,0 1/2, , ,1 1/2, , , ,3 2 2 3
11, , 1, , , , 1, , , , , ,

4
5

x xi j k i j k i j k i j k i j k i j k i j k i j k
i j k n i j k n i j k i j k

ni j k i j k i j k i j k i j k i j k

T T T T T T T T
a nT a nT S

T T T T T T
+ + + +

+ + +
=+ + +

+ + + +  ρ = + + 
 + + + ∑  

5 5
1, , , ,

11 1/2, , ,0 1/2, , 1,1 1/2, , 1/2, , ,1 1/2, , 1/2, ,
1 1

.
2

+
− + + − + + + +

= =

+  + − + + 
 ∑ ∑

x x x xi j k i j k
n i j k n i j k n i j k i j k n i j k i j k

n n

S S
a T a nT a T S a T S   
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3. 2. Discrete total energy conservation equation 
In the absence of friction and external forces, the discrete kinetic energy 

equation has the form [25]: 
 

, , ' 1 '
, , , , , , , , , , , , , ,δ ς ( ) δ ς ( )

x x x y y yi j k
x i j k i j k i j i j k y i j k i j k i j i j k

dE
u E g P v E g P

dt
      + + + + + + +            

 

( ) ( )'
, , , , , , , , ,, , , ,

, , , ,

δ ς ( ) δ

.

x y
z z x y

z i j k i j i j k z i j k u i j k vi j k i j k

z
k

i j k i j k z
k
z

w g P w E w E

w h
g

h

   + + + + =        

ρ
= (44)

 

Equation (44) uses the following notations: 

, , 1 , , , , 1 , ,
, , 1/2 , , 1/2

2 2
, , , ,

, ,

( ) , ( ) ,
2 2

( ) ( )
.

2

i j k i j k i j k i j k
u i j k v i j k

x y

i j k i j k
i j k

u u v v
E E

u v
E

+ +
+ += =

+
=

 

 

The equation for density in the absence of diffusion and in the adiabatic 
approximation has form (35), where , , 1/2, , , 1/2, , , 1/2, , ,i j k i j k i j k i j k+ + +ρ ρ ρ ρ  satisfy 
to relations (37a)–(37c). 

Then the equation for the rate of potential energy change , , , ,i j k k i j kgzΠ = − ρ  is 
written in the following way [25]: 

 

, , , , , ,
, , , , , , , , , , , ,δ ( ) δ ( ) δ ( ) .

z
k

i j k i j k i j k z
x i j k i j k y i j k i j k z i j k i j k k

z

d w h
u v w g

dt h
Π ρ

+ Π + Π + Π = −   (45) 

 

In equation (40), 1/2, , 1/2, , , 1/2, , 1/2,, ,i j k k i j k i j k k i j kgz gz+ + + +Π = − ρ Π = − ρ  

, , 1/2 1/2 , , 1/2.i j k k i j kgz+ + +Π = − ρ  
Note that the difference analogue of the buoyancy force work in equation (45) 

is identical to the term in equation (44) for , ,i j kE in the case of a divergent form of 
equation for density (35). 

Let us integrate equations (44) and (45) in a difference sense over space, then 
the discrete analogue of the total energy satisfies the equation (invariant IV): 

 

0

2 2
, , , , , , ,1 , , ,1 ,

,

ρ ς ( ) ς ( ) ς
ς 0.

2 2

x y
x yV

i j k i j k i j i j i j i j i j
k i j

dE d d u d v d
gz g

dt dt dt dt dt

Ω
 

   − + + + =   
   

 

 (46) 

 

The total energy conservation law (46), being an analogue of continuous 
invariant (20), is satisfied provided that the approximation of the buoyancy force 
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work (the right side of equations (44) and (45)) is exactly consistent in both 
equations. 

 
3. 3. Discrete equation for the rate of dynamic potential energy change  
Assume that ( 1/2+Ωk  is the surface square at horizon 1/2+kz ): 

2

1

1/2 , , 1/2
,2 1 1/2

1 1 ,
( )

t
s
k i j k x y t

t i jk

h h h
t t+ +

+

 
ρ = ρ − Ω  

∑ ∑  where th is the time step. 

Then suppose: 
 

, , , , ,
z

s
i j k i j k k

∗ρ = ρ +ρ  1/2, , 1/2, , ,
z

s
i j k i j k k

∗
+ +ρ = ρ +ρ  , 1/2, , 1/2, ,

z
s

i j k i j k k
∗

+ +ρ = ρ +ρ  

, , 1/2 , , 1/2 1/2.s
i j k i j k k

∗
+ + +ρ = ρ +ρ                                                                            (47) 

 

Taking into account continuity equation (28), we obtain: 

( ) ( ) ( ), ,
, , , , , , , , , , , ,δ δ δi j k

x i j k i j k y i j k i j k z i j k i j k

d
u v w

dt

∗
∗ ∗ ∗ρ

+ ρ + ρ + ρ +  

( ), , , , , , , ,δ δ δ δ 0.
z zs s

k x i j k y i j k z i j k i j k z ku v w w+ρ + + + ρ =                     (48) 
 

Let , , , ,ρpe
i j k k i j kD gz ∗= − . Then the consequence of notations (47) and equation 

(48) is the equation for dynamic potential energy ( , ,
pe

i j kD ) in the adiabatic 
approximation, in the absence of diffusion and external sources: 

 

( ) ( ) ( ) ( ), ,
, , , , , , , , , , , ,

, , , ,

δ δ δ

.

pe
zi j k pe pe pe s

x i j k i j k y i j k i j k z i j k i j k k z k

z
k
z i j k i j k

k
z

dD
u a v a w a gz w

dt

h w
g

h

∗

 + + + + δ ρ = 

ρ
= −

  

(49)

 

 

Equation (49) uses the following notations: 
 

* * *
1/2, , 1/2, , , 1/2, , 1/2, , , 1/2 1/2 , , 1/2, , .pe pe pe

i j k k i j k i j k k i j k i j k k i j ka gz a gz a gz+ + + + + + += − ρ = − ρ = − ρ  
 

Then the following property holds: 

0

* 2 2
, , , , , , ,1 , , ,1 ,

,

ρ ς ( ) ς ( ) ς
ς 0.

2 2

x yV x y

i j k i j k i j i j i j i j i j
k i j

dE d d u d v d
gz g

dt dt dt dt dt

Ω
 

    − + + + =   
    

 

 (50) 

 

Approximations (47) ensure the fulfillment of equation (49) and, therefore, 
(50) (invariant V, which corresponds to its continuous counterpart (24)). Note that 
conservation law (50) can also be obtained in a more general case – the dependence 
of the average density over time ρ ρ ( , ).S S z t=  
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4. Numerical experiments 
Let us consider examples of the Black Sea circulation calculation for 2011 [29] 

using some of the approximations obtained. 
In the numerical experiments, a uniform step along the horizontal coordinates 

was set to 1.6 km; 27 horizons were used vertically with condensation in the upper 
layer of the sea. The runoff of the Black Sea rivers was taken into account in 
accordance with [30] and amounted to about 340 km, of which the rivers of 
the northwestern part of the sea (the Danube, the Dniester, the Dnieper, and 
the Southern Bug) account for approximately 78%, the rivers of the Caucasus 
(the Rioni and smaller rivers) – 13%, and the rivers of Turkey (the Yeshil-Irmak, 
the Kyzyl-Irmak, and the Sakarya) – 5%. The rivers of the Caucasus, due to their 
large number, were represented along the Caucasian coast in the form of three 
sources. The salinity at river mouths was assumed to be zero. The water 
temperature at the mouths of rivers, except for the rivers of Turkey, was set from 
[31]. The temperature of the Turkish rivers was set equal to the temperature of 
the coastal sea waters. 

It was assumed that in the Upper Bosphorus current the temperature and 
salinity are the same as in the sea. In the Lower Bosphorus stream, the temperature 
was taken to be 16°C and salinity – 35‰. 

To set the atmospheric forcing, SKIRON data for 2011 were used; vertical 
mixing was described based on the Mellor–Yamada theory [31]. The initial 
conditions in this calculation corresponded to January 1, 2011. 

Three numerical calculations were carried out. They varied in difference 
schemes for approximating the temperature and salinity advection equations. 
In the first (I) calculation, a “traditional” scheme was used, which ensured 
the preservation of 2 2

, , , , , , , ,, , ,i j k i j k i j k i j kT T S S , in the second (II) one – 
5 3

, , , , , , , ,, , ,i j k i j k i j k i j kT T S S , and in the third (III) one – 10 10
, , , , , , , ,, , ,i j k i j k i j k i j kT T S S . 

The choice is based on the following considerations. The second experiment 
corresponds to the maximum degree of temperature and salinity in the modern 
equation of state, the third one demonstrates the effect of the approximations used. 

The initial conditions for the second and third calculations correspond to 
February 1, 2011 according to the results of the first experiment. 

The integration time for the second and third calculations was 20 days. 
All figures are as of February 21, 2011. 

Fig. 2 demonstrates that the basin was covered by an extensive cyclonic gyre 
with two centers in its western and eastern parts. Mesoscale eddies ranging in size 
from several kilometers to tens appeared and evolved between the shore and 
the Black Sea Rim Current. There is a qualitative agreement in the level fields 
(Fig. 2), and quantitative differences in the level structure among three calculations 
are insignificant and observed in areas of intense temporal variability of the Black 
Sea Rim Current. The qualitative agreement of the results indicates the correctness 
of the approximations used. 
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F i g.  2. Reduced sea level in experiments I (a), II (b), and III (c) 
 
During this period, on the sea surface (Fig. 3), a zone of cold water is observed 

on the northwestern shelf, and that of warm water – in the southwestern 
anticyclone area. Upwelling is observed near the Kerch Strait and a thin alongshore 
strip in the southeastern corner of the basin. These features were more clearly 
obtained in experiments II and III (Fig. 3, a, b). In the southeastern anticyclone 
area, narrow frontal zones, which are more clearly observed in calculations II and 
III, are distinguished. 
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F i g.  3. Temperature at the 3-m horizon in experiments I (a), II (b), and III (c) 
 
The greatest difference in temperature fields is observed in the upper layer of 

the sea in coastal areas (Fig. 4). The areas identified are the northwestern shelf, 
the upwelling zone near the coast of Crimea, and the alongshore strip near 
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the Anatolian and Caucasian coasts. The maximum difference between 
the temperature values in experiments I and II, I and III (Fig. 4) in absolute value is 
2 °C for both options, and the average is 0.14 °C. 
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F i g.  4. Difference between the temperature values at the 3-m horizon in calculations I and II (a) and 
I and III (b) 

 
The salinity field has a structure that corresponds to an extensive cyclonic 

circulation covering the deep-water part during this period, and contains areas of 
less saline water in the coastal zone. A clearly expressed tendency is observed: 
when using schemes with invariants of a higher degree (calculations II and III – see 
Fig. 5, b, c), the effect of deep waters upwelling in the central part and 
downwelling of less saline waters along the cyclonic circulation periphery is 
enhanced. This is evidenced by the structure of isoline 18.35‰, which serves as 
a conditional marker. Its relatively smooth structure demonstrates that increasing 
the order of the invariant does not increase the computational noise in the model, 
manifested in the form of a small-scale component. 
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F i g.  5. Salinity at the 30-m horizon in experiments I (a), II (b), and III (c). Isoline 18.35 ‰ is 
highlighted in red 

 
In the salinity field, the greatest difference is observed in the river inflow area 

and in the Bosphorus region. In the central part of the sea, its negative values are 
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observed. It corresponds to the excess of salinity in experiments II and III 
compared to calculation I, and positive values at the continental slope of 
the northwestern shelf and along the coastal area of the northern and western parts 
(Fig. 6). The extreme values are approximately 1 and 2‰ for both calculation 
options. 
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F i g.  6. Difference between the salinity values at the 30-m depth in calculations I and II (a) and I 
and III (b) 

 
When implementing schemes with nonlinear invariants, comparative analysis 

reveals one peculiarity, which is the sharpening of transverse gradients in 
the frontal zones. Therefore, it can be assumed that in calculations II and III, 
the vertical velocity is reproduced more adequately. And first of all, it is necessary 
to consider the presence of a small-scale component, which can contain a large 
error. 

From a comparison of Fig. 7, a and b, it follows that when using patterns with 
invariants of a degree greater than 2, the density of two to four step perturbations 
decreases. For any numerical model, the variability of fields on these scales is 
distorted due to the incorrect value of the group velocity. 
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F i g.  7. Vertical velocity at the 400-m depth in calculations I (a) and III (b) (western part of the sea)  

 
A similar picture is observed in the eastern part of the sea (Fig. 8). Large-scale 

features in the vertical velocity structure in all three calculations are approximately 
the same, but the intensity of small-scale variability is lower in calculations II 
and III. 

 

  
а b 

 
F i g.  8. Vertical velocity at the 400-m depth in calculations I (a) and III (b) (eastern part of the sea)  

 
5. Conclusion 
The results obtained demonstrate the possibility of constructing discrete 

analogues of a continuous problem that have a set of nonlinear invariants. 
The method of introducing an overdetermined grid used in the present paper 
allows obtaining necessary approximations to ensure a number of conservation 
laws. In the absence of friction and external forces in the adiabatic 
approximation, the expressions obtained ensure the conservation of 

( 1), ( 1), , ( ), ( )ρ≥ ≥ + +K L peT K S L E E DΠ . 
It is easy to see that expressions (31.1), (31.2), and (32) can be generalized to 

the case of an arbitrary form of differentiable functional , ,i j kQ depending on , ,i j kT , 
and provided that the continuity equation is satisfied. When using patterns that 
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have , , , ,,i j k
L

k i j
KT S invariants, where K and L can be large, at least two questions arise. 

First, it is necessary to estimate the calculation error, since the number of 
operations grows correspondingly as the polynomial degree increases, which can 
lead to an increase in the order of the approximation error. Secondly, it is not clear 
how well these approximations apply when describing the inflow of rivers, 
exchange through straits, and action of external forces (taking into account 
the atmospheric effect on the sea surface). 

When deriving the difference equation for density advection from functional 
, ,i j kG , it should be differentiable from , ,i j kT and , ,i j kS . It is easy to generalize 

the results obtained to the case when , ,i j kG  depends on R functions (formula (42)). 
Assuming that each variable of the functional satisfies an advection equation of 
type (35) in a velocity field satisfying expression (28), the equation for , ,i j kG is 
obtained in divergent form. 

An attractive feature of the obtained approximations is the ability to use 
independently patterns that ensure conservation of , , , ,,i j k

L
k i j

KT S at K > 2, L > 2, and 
the total energy in the equation of state, which has the form of a polynomial of 
temperature and salinity of degree N > 1, M > 1. 

The analysis of the results obtained indicates that with an increase in K and L, 
three effects take place: gradients in the frontal zones in the temperature field 
become more acute, processes of water upwelling in the center of the sea and 
descent along the periphery intensify, and the density of small-scale features in 
the vertical velocity field decreases. How connected they are and how they affect 
the accuracy of calculations are the next questions that require a separate study. 
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