The Black Sea Deep Current Velocities Estimated from the Data of Argo Profiling Floats

N.V. Markova, A.V. Bagaev

Marine Hydrophysical Institute, Russian Academy of Sciences, Sevastopol, Russian Federation

e-mail: n.v.markova@mail.rum

Abstract

Considering scarce available data on the velocity field in the deep layers of the Black Sea, it is important to contribute by deriving the velocity vectors from indirect sources. The Lagrangian velocity vectors of the Black Sea currents on the depths below the main pycnocline are calculated using the data on the trajectories and actual profile depths of the Argo profiling drifters in 2005-2015. The values and directions of the calculated vectors in the layers 350 – 600, 600 – 800, 800 – 1200 and 1200 – 1600 m are analyzed. The obtained results are statistically evaluated. It is shown that the prevailing number (88%) of the modules of the calculated current velocity vectors is within the range 1 – 20 cm/s. The currents’ velocity average for the whole period of measurements, is about 4 cm/s in the layers 350 – 600 and 600 – 800 m, approximately 6 cm/s in the 800 – 1200 m layer and 3.5 cm/s in the 1200 – 1600 m layer. The mean current velocities from the whole data access are higher in January – March, whereas the lowest ones fall on June – October. On the background of general cyclonic circulation the meso-scale eddy structures on the specified depths are revealed. A discussion is presented on the available approaches to increase the precision and credibility of the obtained velocities magnitude and direction.

Keywords

the Black Sea, deepwater circulation, current velocity, Argo float

For citation

Markova, N.V. and Bagaev, A.V., 2016. The Black Sea Deep Current Velocities Estimated from the Data of Argo Profiling Floats. Physical Oceanography, (3), pp. 23-35. doi:10.22449/1573-160X-2016-3-23-35

DOI

10.22449/1573-160X-2016-3-23-35

References

  1. Knipovich, N.M., 1932, “Gidrologicheskie issledovaniya v Chernom more [Hydrological studies in the Black Sea]”, Tr. Azovo-Chernomorskoy nauchno-promyslovoy ekspeditsii, VNII mor. rybnogo khoz-va, iss. 10, 272 p. (in Russian).
  2. Caspers, H., 1957, “Black Sea and Sea of Azov”, Treatise on Marine Ecology and Paleoecology, Geolog. Soc. Amer. Memories, vol. 67, no 1, pp. 803-890.
  3. Filippov, D.M., 1968, “Tsirkulyatsiya i struktura vod Chernogo morya [The Black Sea waters structure and circulation]”, Nauka, 319 p. (in Russian).
  4. Blatov, A.S., Bulgakov, N.P. & Ivanov, V.A. [et al.], 1984, “Izmenchivost' gidrofizicheskikh poley Chernogo morya [Variability of the Black Sea hydrophysical fields]”, Gidrometeoizdat, 238 p. (in Russian).
  5. Marchuk, G.I., Kordzadze, A.A. & Skiba, Yu.N., 1975, “Raschet osnovnykh gidrologicheskikh poley Chernogo morya na osnove metoda rasshchepleniya [Calculation of major hydrological fields of the Black Sea on the basis of the splitting method], Izvestiya USSR, Atmos. Ocean. Phys., vol. 11, no. 4, pp. 379-393 (in Russian).
  6. Kordzadze, A.A., 1989, “Matematicheskoe modelirovanie dinamiki morskikh techeniy (teoriya, algoritmy, chislennye eksperimenty) [Mathematical modeling of the sea current dynamics (theory, algorithms, numerical experiments)]”, OVM AN SSSR, 218 p. (in Russian).
  7. Ivanov, V.A., Belokopytov, V.N., 2011, “Okeanografiya Chernogo morya [The Black Sea oceanography]”, Sevastopol, MGI NAN Ukrainy, 212 p. (in Russian).
  8. Korotaev, G., Oguz, T. & Riser, S., 2006, “Intermediate and deep currents of the Black Sea obtained from autonomous profiling floats”, Deep-Sea Res. II: Topical Studies in Oceanography, vol. 53, no. 17-19, pp. 1901-1910.
  9. Oguz, T., Latun, V.S. & Latif, M.A. [et al.], 1993, “Circulation in the surface and intermediate layers of the Black Sea”, Deep-Sea Res., vol. 40, no. 8, pp. 1597-1612.
  10. Dobrovol'skiy, A.D., Zalogin, B.S., 1982, “Morya SSSR [The seas of the USSR]”, Izd-vo MGU, 192 p. (in Russian).
  11. Stanev, E.V., 1989, “Numerical modelling of the circulation and the hydrogen sulphide and oxygen distribution in the Black Sea”, Deep-Sea Res., vol. 36, no. 7, pp. 1053-1065.
  12. Kubryakov, A.I., 2014, “Modelirovanie tsirkulyatsii i protsessov massoperenosa v Chernom more v prilozhenii k zadacham operativnoy okeanografii [Modelling of circulation and mass transfer processes in the Black Sea as applied to operational oceanography]”, Doctor’s thesis, Sevastopol, MGI NAN Ukrainy, 399 p. (in Russian).
  13. Demyshev, S.G., Korotaev, G.K., 1992, “Chislennaya energosbalansirovannaya model' baroklinnykh techeniy okeana na setke C [Numerical energy-balanced model of the ocean baroclinic currents at the C grid]”, Chislennye modeli i rezul'taty kalibrovochnykh raschetov techeniy v Atlanticheskom okeane, IVM RAN, pp. 163-231 (in Russian).
  14. Zalesny, V.B., Diansky, N.A. & Fomin V.V. [et al.], 2010, “Numerical model of the circulation of the Black Sea and the Sea of Azov”, Russ. J. Numer. Anal. Math. Modelling, vol. 25, no. 6, pp. 581-609.
  15. Mizyuk, A.I., Senderov, M.V. & Korotaev, G.K. [et al.], 2016, “Osobennosti gorizontal'noy izmenchivosti temperatury poverkhnosti v zapadnoy chasti Chernogo morya po rezul'tatam modelirovaniya s vysokim prostranstvennym razresheniem [Features of the surface temperature horizontal variability in the Black Sea western part according to the results of modeling with high spatial resolution]”, Izvestiya Atmos. Ocean. Phys., vol. 52, no. 5, pp. 11-21 (in Russian).
  16. Ibraev, R.A., Ushakov, K.V. & Khabeev R.N., 2012, “Vikhrerazreshayushchaya 1/10° model' Mirovogo okeana [Eddy-resolving 1/10° model of the World Ocean]”, Ibid., vol. 48, no. 1, pp. 45-55 (in Russian).
  17. Riser, S.C., Freeland, H.J. & Roemmich, D. [et al.], 2016, “Fifteen years of ocean observations with the global ARGO array”, Nat. Clim. Change., vol. 6, no. 2, pp. 145-153.
  18. Grayek, S., Stanev, E.V., 2012, “Assessment of the Black Sea observing system. A focus on 2005 – 2012 ARGO campaigns”, Ocean Dyn., Issue 12, pp. 1665-1684 (in Russian).
  19. Rosell-Fieschi, M., 2014, “Ocean Velocities as Inferred from ARGO Floats: Methodology and Applications”, PhD Thesis, Institut de Ciències del Mar, CSIC, 121 p.
  20. ARGO Data Management, http://www.ARGOdatamgt.org/ (Access date: 29.05.2015).
  21. Global Ocean Data Assimilation Experiment, USGODAE, ARGO Page, http://www.usgodae.org/ARGO/ARGO.html (Access date: 23.06.2015).
  22. Nilsson, J.A.U., Dobricic, S. & Pinardi, N., [et al.], 2012, “Variational assimilation of Lagrangian trajectories in the Mediterranean ocean Forecasting System”, Ocean Sci., pp. 249-259, doi:10.5194/os-8-249-2012.
  23. Gerasimova, S.V., Lemeshko, E.E., 2011, “Otsenka skorostey glubokovodnykh techeniy po dannym ARGO [Assessment of deep current velocities according to ARGO data]”, Sistemy kontrolya okruzhayushchey sredy, Sevastopol, MGI NAN Ukrainy, iss. 15, pp. 187-196 (in Russian).
  24. Lebedev, K.V., Yoshinari, H. & Maximenko N.A. [et al.], 2007, “YoMaHa'07: Velocity data assessed from trajectories of ARGO floats at parking level and at the sea surface”, Hacker IPRC Technical Note, no. 4 (2), 16 p.
  25. Park, J.J., Kim, K., 2013, “Deep currents obtained from ARGO float trajectories in the Japan/East Sea”, Deep-Sea Res. II: Topical Studies in Oceanography, pp. 169-181, doi:10.1016/j.dsr2.2012.07.032.
  26. Kobayashi, T., Nakamura, T. & Ogita, N. [et al.], 2009, “Quality control of Argo surface trajectory data considering position errors fixed by Argos system”, Proc. of the OceanObs'09: Sustained Ocean Observations and Information for Society Conference (Annex), ESA Publication WPP-306, doi:10.5270/OceanObs09.

Download the article (PDF)