Climatic Changes of Thermal Conditions in the Pacific Subarctic at the Modern Stage of Global Warming
I. D. Rostov✉, E. V. Dmitrieva, N. I. Rudykh
V. I. Il’ichev Pacific Oceanological Institute, Far Eastern Branch of Russian Academy of Sciences, Vladivostok, Russia
✉ e-mail: rostov@poi.dvo.ru
Abstract
Purpose. The study is aimed at identifying the regional features of the surface air temperature in the coastal zone and over the Pacific Ocean (to the north of 40° N) manifested as a result of global climate changes at the turn of the XX–XXI centuries, and at assessing their trends and possible causal relationships with the processes in the atmosphere and on the ocean surface.
Methods and Results. Based on the Global Meteorological Network and NOAA reanalysis data, the regional features of interannual oscillations of the surface air temperature and their relationship with variations in the fields of pressure, wind and water temperature on the ocean surface, and with climate indices over the past 4 decades were identified. In order to determine the temperature field spatial-temporal structure and to zone the water area according to the features of climate changes, the methods of cluster, correlation analysis and the apparatus of empirical orthogonal functions were used. The results obtained made it possible to characterize the degree of heterogeneity of the studied area response to the ongoing global changes, to identify different domains and to assess quantitatively the warming rate in these water areas.
Conclusions. The tendencies of modern warming are manifested in the trends of interannual air temperature variability, on the average, by ~0.20°C/10 years in the subarctic, and indicate significant regional differences (1.5–2 times) in the ongoing changes. In the west of the region, the warming rate is higher than in the east, where the temperature trends are minimal or statistically insignificant. In the warm period of a year, their values are higher than those in the cold period. The alternation phases of the warm and cold periods are consistent with the variation tendencies in the characteristics both of the atmospheric action centers and various climatic parameters. The corresponding correlations are most widely manifested in variations in the empirical orthogonal functions modes of the H500 geopotential field, and the PDO, NP, SOI, PTW, AD and EP/NP indices. Stable anomalies and trends of the ocean surface temperature in the North Atlantic also play an important role in formation of the Та anomalies in the western subarctic.
Keywords
Pacific Ocean, subarctic, coastal zone, modern climatic changes, regional features, air temperature, warming trends, climatic parameters, correlations
Acknowledgements
The work was carried out within the framework of the state task to POI FEB of RAS on theme No. 0271-2019-0003. State registration number is АААА-А17-117030110042-2. The authors are thankful both to the software developers for opportunity of using the climatic data posted on the NOAA sites, and to the reviewer for his constructive remarks.
Original russian text
Original Russian Text © I. D. Rostov, E. V. Dmitrieva, N. I. Rudykh, 2021, published in MORSKOY GIDROFIZICHESKIY ZHURNAL, Vol. 37, Iss. 2, pp. 162-178 (2021)
For citation
Rostov, I.D, Dmitrieva, E.V. and Rudykh, N.I., 2021. Climatic Changes of Thermal Conditions in the Pacific Subarctic at the Modern Stage of Global Warming. Physical Oceanography, 28(2), pp. 149-164. doi:10.22449/1573-160X-2021-2-149-164
DOI
10.22449/1573-160X-2021-2-149-164
References
- Gruza, G.V., Rankova, E.Ya., Rocheva, E.V. and Smirnov, V.D., 2015. Current Global Warming: Geographical and Seasonal Features. Fundamental and Аpplied Сlimatology, 2, pp. 41-62 (in Russian).
- Panin, G.N., Vyruchalkina, T.Yu. and Solomonova, I.V., 2010. Regional Climatic Changes in Northern Hemisphere and Their Relationship to Circulation Indexes. Problems of Ecological Monitoring and Ecosystem Modelling, 23, pp. 92-108 (in Russian).
- England, M.H., McGregor, S., Spence, P., Meehl, G.A., Timmermann, A., Cai, W., Gupta, A.S., McPhaden, M.J., Purich, A. and Santoso, A., 2014. Recent Intensification of Wind-Driven Circulation in The Pacific and the Ongoing Warming Hiatus. Nature Climate Change, 4(3), pp. 222-227. https://doi.org/10.1038/nclimate2106
- IPCC, 2013. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press, 1535 pp.
- WMO, 2020. WMO Provisional Statement on The State of The Global Climate in 2019. WMO-No. 1248. 40 p. https://library.wmo.int/doc_num.php?explnum_id=10211
- Blunden, J. and Arndt, D.S., 2020. State of the Climate in 2019. Bulletin of the American Meteorological Society, 101(8), pp. S1-S429. https://doi.org/10.1175/2020BAMSStateoftheClimate.1
- Miller, A.J., Chai, F., Chiba, S., Moisan, J.R. and Neilson, D.J., 2004. Decadal-Scale Climate and Ecosystem Interactions in the North Pacific Ocean. Journal of Oceanography, 60(1), pp. 163-188. doi:10.1023/B:JOCE.0000038325.36306.95
- Hare, S.R. and Mantua, N.J., 2000. Empirical Evidence for North Pacific Regime Shifts in 1977 and 1989. Progress in Oceanography, 47(2–4), pp. 103-145. doi:10.1016/S0079- 6611(00)00033-1
- Perevedentsev, Yu.P. and Shantalinskiy, K.M., 2015. Dynamics of the Tropo- and Stratosphere and the Modern Climate Changes. Fundamental and Аpplied Сlimatology, 1, pp. 211-231 (in Russian).
- Steiner, A.K., Ladstädter, F., Randel, W.J., Maycock, A.C., Fu, Q., Claud, C., Gleisner, H., Haimberger, L., Ho, S.-P., Keckhut, P., Leblanc, T., Mears, C., Polvani, L.M., Santer, B.D., Schmidt, T., Sofieva, V., Wing, R. and Zou, C.-Z., 2020. Observed Temperature Changes in the Troposphere and Stratosphere from 1979 to 2018. Journal of Climate, 33(19), pp. 8165– 8194. https://doi.org/10.1175/JCLI-D-19-0998.1
- Na, H., Kim, K.-Y., Minobe, S. and Sasaki, Y.N., 2018. Interannual to Decadal Variability of the Upper-Ocean Heat Content in the Western North Pacific and Its Relationship to Oceanic and Atmospheric Variability. Journal of Climate, 31(13), pp. 5107-5125. https://doi.org/10.1175/JCLI-D-17-0506.1
- Johnson, N.C. and Feldstein, S.B., 2010. The Continuum of North Pacific Sea Level Pressure Patterns: Intraseasonal, Interannual, and Interdecadal Variability. Journal of Climate, 23(4), pp. 851-867. doi:10.1175/2009JCLI3099.1
- Johnson, G.C. and Lyman, J.M., 2020. Warming Trends Increasingly Dominate Global Ocean. Nature Climate Change, 10(8), pp. 757-761. https://doi.org/10.1038/s41558-020- 0822-0
- Stephens, C., Levitus, S., Antonov, J. and Boyer, T.Р., 2001. On the Pacific Ocean Regime Shift. Geophysical Research Letters, 28(19), pp. 3721-3724. https://doi.org/10.1029/2000GL012813
- Kwon, Y.-O., Alexander, M.A., Bond, N.A., Frankignoul, C., Nakamura, H., Qiu, B. and Thompson, L.A., 2010. Role of the Gulf Stream and Kuroshio–Oyashio Systems in Large- Scale Atmosphere–Ocean Interaction: A Review. Journal of Climate, 23(12), pp. 3249–3281. doi:10.1175/2010JCLI3343.1
- Rojdestvensky, A.E. and Malyshev, G.A., 2016. About Sources and Absorbers Atmospheric Heat Flux in the North Hemisphere. Proceedings of the Russian State Hydrometeorological University, 45, pp. 142-150 (in Russian).
- Glebova, S.Yu., 2018. Cyclones over the Pacific Ocean and Far-Eastern Seas in Cold and Warm Seasons and Their Influence on Wind and Thermal Regime in the Last Two Decade Period. Izvestiya TINRO, 193, pp. 153-166. doi:10.26428/1606-9919-2018-193-153-166 (in Russian)
- O'Reilly, C.H. and Czaja, A., 2015. The Response of the Pacific Storm Track and Atmospheric Circulation to Kuroshio Extension Variability. Quarterly Journal of the Royal Meteorological Society, 141(686), pp. 52-66. https://doi.org/10.1002/qj.2334
- Huang, J., Zhang, Y., Yang, X.-Q., Ren, X. and Hu, H., 2020. Impacts of North Pacific Subtropical and Subarctic Oceanic Frontal Zones on the Wintertime Atmospheric Large-Scale Circulations. Journal of Climate, 33(5), pp. 1897-1914. https://doi.org/10.1175/JCLI-D-19- 0308.1
- Lee, T., Fukumori, I. and Tang, B., 2004. Temperature Advection: Internal versus External Processes. Journal of Physical Oceanography, 34(8), pp. 1936-1944. https://doi.org/10.1175/1520-0485(2004)034%3C1936:TAIVEP%3E2 0.CO;2
- Rostov, I.D., Dmitrieva, E.V., Rudykh, N.I. and Vorontsov, A.A., 2019. Climatic Changes of Thermal Condition in the Kara Sea at Last 40 Years. Arctic and Antarctic Research, 65(2), pp. 125- 147. doi:10.30758/0555-2648-2019-65-2-125-147 (in Russian).
- Rostov, I.D., Dmitrieva, E.V., Rudykh, N.I. and Vorontsov, A.A., 2020. Climatic Changes in Thermal Conditions of Marginal Seas in the Western Pacific. Russian Meteorology and Hydrology, 45(3), pp. 169-178. doi:10.3103/S1068373920030048
- Sun, C., Kucharski, F., Li, J., Wang, K., Kang, I.-S., Lian, T., Ding, R. and Xie, F., 2019. Spring Aleutian Low Weakening and Surface Cooling Trend in Northwest North America during Recent Decades. Journal of Geophysical Research: Atmospheres, 124(22), pp. 12078- 12092. https://doi.org/10.1029/2019JD031405
- Dobrovolski, A.D., ed., 1968. [Pacific Ocean. Vol. 2. Hydrology of the Pacific Ocean]. Moscow: Nauka, 524 p. (in Russian).
- Favorite, F., Dodimead, A.J. and Nasu, K., 1976. Oceanography of the Subarctic Pacific Region, 1960-1971. Bulletin - International North Pacific Fisheries Commission, no. 33. Vancouver, Canada, 187 p.
- Furtado, J.C., Di Lorenzo, E., Anderson, B.T. and Schneider, N., 2012. Linkages between the North Pacific Oscillation and Central Tropical Pacific SSTs at Low Frequencies. Climate Dynamics, 39(12), pp. 2833-2846. doi:10.1007/s00382-011-1245-4
- Wu, C.-R., Lin, Y.-F., Wang, Y.-L., Keenlyside, N. and Yu, J.-Y., 2019. An Atlantic-Driven Rapid Circulation Change in the North Pacific Ocean during the Late 1990s. Scientific Reports, 9, 14411. https://doi.org/10.1038/s41598-019-51076-1
- Wills, R.C.J., Battisti, D.S., Proistosescu, C., Thompson, L.-A., Hartmann, D.L. and Armour, K.C., 2019. Ocean Circulation Signatures of North Pacific Decadal Variability. Geophysical Research Letters, 46(3), pp. 1690-1701. https://doi.org/10.1029/2018GL080716
- Cayan, D.R., 1992. Latent and Sensible Heat Flux Anomalies over the Northern Oceans: Driving the Sea Surface Temperature. Journal of Physical Oceanography, 22(8), pp. 859-881. https://doi.org/10.1175/1520-0485(1992)022%3C0859:LASHFA%3E2.0.CO;2
- Honda, M., Yamane, S. and Nakamura, H., 2007. Inter-Basin Link between the North Pacific and North Atlantic in the Upper Tropospheric Circulation: Its Dominance and Seasonal Dependence. Journal of the Meteorological Society of Japan. Ser. II, 85(6), pp. 899-908. doi:10.2151/jmsj.85.899
- Wu, L., Liu, Z., Liu, Y., Liu, Q., and Liu, X., 2005. Potential Global Climatic Impacts of the North Pacific Ocean. Geophysical Research Letters, 32(24), L24710. doi:10.1029/2005GL024812
- Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., Iredell, M., Saha, S., White, G., Woollen, J., Zhu, Y., Chelliah, M., Ebisuzaki, W., Higgins, W., Janowiak, J., Mo, K.C., Ropelewski, C., Wang, J., Leetmaa, A., Reynolds, R., Jenne, R. and Joseph, D., 1996. The NCEP/NCAR 40-Year Reanalysis Project. Bulletin of the American Meteorological Society, 77(3), pp. 437-472. doi:10.1175/1520- 0477(1996)077<0437:tnyrp>2.0.co;2
- Thomson, R.E. and Emery, W.J., 2014. Data Analysis Methods in Physical Oceanography. 3rd edition. Elsevier Science, 728 p. https://doi.org/10.1016/C2010-0-66362-0
- Reynolds, R.W., Rayner, N.A., Smith, T.M., Stokes D.C. and Wang W., 2002. An Improved In Situ and Satellite SST Analysis for Climate. Journal of Climate, 15(13), pp. 1609-1625. doi:10.1175/1520-0442(2002)015<1609:AIISAS>2.0.CO;2
- Frankignoul, C. and Sennéchael, N., 2007. Observed Influence of North Pacific SST Anomalies on the Atmospheric Circulation. Journal of Climate, 20(3), pp. 592-606. doi:10.1175/JCLI4021.1
- Liu, Q., Wen, N. and Liu, Z., 2006. An Observational Study of the Impact of the North Pacific SST on the Atmosphere. Geophysical Research Letters, 33(18), L18611. doi:10.1029/2006GL026082
- Deser, C., Phillips, A.S. and Hurrell, J.W., 2004. Pacific Interdecadal Climate Variability: Linkages between the Tropics and the North Pacific during Boreal Winter since 1900. Journal of Climate, 17(16), pp. 3109-3124. doi:10.1175/1520- 0442(2004)017<3109:PICVLB>2.0.CO;2
- Sugimoto, S. and Hanawa, K., 2009. Decadal and Interdecadal Variations of the Aleutian Low Activity and Their Relation to Upper Oceanic Variations over the North Pacific. Journal of the Meteorological Society of Japan. Ser. II, 87(4), pp. 601-614. doi:10.2151/jmsj.87.601
- Amaya, D.J., Miller, A.J., Xie, S.-P. and Kosaka, Yu, 2020. Physical Drivers of the Summer 2019 North Pacific Marine Heatwave. Nature Communications, 11, 1903. https://doi.org/10.1038/s41467-020-15820-w
- Di Lorenzo, E. and Mantua, N., 2016. Multi-Year Persistence of the 2014/15 North Pacific Marine Heatwave. Nature Climate Change, 6(11), pp. 1042-1047. doi:10.1038/NCLIMATE3082
- Hu, D. and Cui, M., 1991. The Western Boundary Current of the Pacific and its Role in the Climate. Chinese Journal of Oceanology and Limnology, 9(1), pp. 1-14. doi:10.1007/BF02849784