Model of the Lagrangian Particle Transport in a Quasi-Two-Phase Ocean – Ice Medium in a Parallel Ocean Dynamics Model

S. V. Semin1, 2, ✉, L. Yu. Kalnitskii1, K. V. Ushakov1, R. A. Ibrayev3, 1

1 Shirshov Institute of Oceanology, Russian Academy of Sciences, Moscow, Russian Federation

2 Nuclear Safety Institute, Russian Academy of Sciences, Moscow, Russian Federation

3 Marchuk Institute of Numerical Mathematics, Russian Academy of Sciences, Moscow, Russian Federation

e-mail: svsemin@unistemlab.com

Abstract

Purpose. The purpose of the study is to develop the model of impurity transport in the ocean – sea ice system based on the Lagrangian approach.

Methods and Results. The Lagrangian transport of particles is considered in the approximation of a quasi-two-phase ocean – ice medium (particles are subject to the ice formation and melting processes, but actually remain in the ocean model). For the first time, the Lagrangian model over an arbitrary computational grid taking into account the quadratic correction of turbulent diffusion is described in detail. A synchronous model for the Lagrangian transport and the ocean – sea ice model (INMIO – CICE5.1) is constructed. The test calculations of particle transport in the field of a static vortex in the Cartesian and spherical coordinate systems demonstrate the correctness of the presented method. The results of the experiment on particle cloud transport in the Laptev Sea have shown both the fundamental possibilities of using the approach to solve applied problems and a good scalability of the model’s parallel implementation for a large (up to 106) number of particles.

Conclusions. The model developed on the basis of the Eulerian and Lagrangian approaches, makes it possible to solve comprehensively the problems related to water circulation and spread of impurities of various types (radioactive and stable isotopes, soluble and insoluble elements of anthropogenic and natural origin, etc.) and, consequently, to assess their impact on the environment.

Keywords

computer modeling, Lagrangian transport, ocean dynamics model, ocean – ice model, two-phase medium, turbulent mixing, parallel calculations

Acknowledgements

The work was conducted at the Nuclear Safety Institute, RAS, with financial support from the Russian Science Foundation (grant No. 20-19-00615, sections 2-5), and at the Shirshov Institute of Oceanology, RAS, under state assignment theme FMWE-2024-0017 (section 1). Computational resources were provided by the Interdepartmental Supercomputer Center, RAS.

Original russian text

Original Russian Text © The Authors, 2025, published in MORSKOY GIDROFIZICHESKIY ZHURNAL, Vol. 41, Iss. 3, pp. 358–377 (2025)

For citation

Semin, S.V., Kalnitskii, L.Yu., Ushakov, K.V. and Ibrayev, R.A., 2025. Model of the Lagrangian Particle Transport in a Quasi-Two-Phase Ocean – Ice Medium in a Parallel Ocean Dynamics Model. Physical Oceanography, 32(3), pp. 372-391.

References

  1. Van Sebille, E., Griffies, S.M., Abernathey, R., Adams, T.P., Berloff, P., Biastoch, A., Blanke, B., Chassignet, E.P., Cheng, Y. [et al.], 2018. Lagrangian Ocean Analysis: Fundamentals and Practices. Ocean Modelling, 121, pp. 49-75. https://doi.org/10.1016/j.ocemod.2017.11.008
  2. Khvostova, M.S., 2018. Environmental Problems of Operation of Floating Nuclear Power Plant in the Arctic Region. Russian Arctic, (1), pp. 11-29 (in Russian).
  3. Antipov, S.V., Bilashenko, V.P., Vysotskii, V.L., Kalantarov, V.E., Kobrinskii, M.N., Sarkisov, A.A., Sotnikov, V.A., Shvedov, P.A., Ibraev, R.A. [et al.], 2015. Prediction and Evaluation of the Radioecological Consequences of a Hypothetical Accident on the Sunken Nuclear Submarine B-159 in the Barents Sea. Atomic Energy, 119(2), pp. 132-141. https://doi.org/10.1007/s10512-015-0039-x
  4. Ushakov, K.V., Ibrayev, R.A. and Kalmykov, V.V., 2015. Simulation of the World Ocean Climate with a Massively Parallel Numerical Model. Izvestiya, Atmospheric and Oceanic Physics, 51(4), pp. 362-380. https://doi.org/10.1134/S0001433815040131
  5. Kalmykov, V.V., Ibrayev, R.A., Kaurkin, M.N. and Ushakov, K.V., 2018. Compact Modeling Framework v3.0 for High-Resolution Global Ocean–Ice–Atmosphere Models. Geoscientific Model Development, 11(10), pp. 3983-3997. https://doi.org/10.5194/gmd-11-3983-2018
  6. Kalnitskii, L.Y., Kaurkin, M.N., Ushakov, K.V. and Ibrayev, R.A., 2020. Seasonal Variability of Water and Sea Ice Circulation in the High-Resolution Model of the Arctic Ocean. Известия Российской академии наук. Izvestiya. Atmospheric and Oceanic Physics, 56(5), pp. 598-610. https://doi.org/10.31857/S0002351520050065 (in Russian).
  7. Kulakov, M.Yu., Makshtas, A.P. and Shutilin, S.V., 2012. AARI–IOCM – Coupled Ice-Ocean Circulation Model for the Arctic Ocean. Arctic and Antarctic Research, 2(92), pp. 6-18 (in Russian).
  8. Campin, J.-M., Marshall, J. and Ferreira, D., 2008. Sea Ice-Ocean Coupling Using a Rescaled Vertical Coordinate z*. Ocean Modelling, 24(1-2), pp. 1-14. https://doi.org/10.1016/j.ocemod.2008.05.005
  9. Fadeev, R.Yu., Ushakov, K.V., Tolstykh, M.A. and Ibrayev, R.A., 2018. Design and Development of the SLAV-INMIO-CICE Coupled Model for Seasonal Prediction and Climate Research. Russian Journal of Numerical Analysis and Mathematical Modelling, 33(6), pp. 333-340. https://doi.org/10.1515/rnam-2018-0028
  10. Warner, J.C., Armstrong, B., He, R. and Zambon, J.B., 2010. Development of a Coupled Ocean–Atmosphere–Wave–Sediment Transport (COAWST) Modeling System. Ocean Modelling, 35(3), pp. 230-244. https://doi.org/10.1016/j.ocemod.2010.07.010
  11. Döös, K., Jönsson, B. and Kjellsson J., 2017. Evaluation of Oceanic and Atmospheric Trajectory Schemes in the TRACMASS Trajectory Model v6.0. Geoscientific Model Development, 10(4), pp. 1733-1749. https://doi.org/10.5194/gmd-10-1733-2017
  12. Blanke, B. and Raynaud, S., 1997. Kinematics of the Pacific Equatorial Undercurrent: An Eulerian and Lagrangian Approach from GCM Results. Journal of Physical Oceanography, 27(6), pp. 1038-1053. https://doi.org/10.1175/1520-0485(1997)027%3C1038:KOTPEU%3E2.0.CO;2
  13. Paris, C.B., Helgers, J., Van Sebille, E. and Srinivasan, A., 2013. Connectivity Modeling System: A Probabilistic Modeling Tool for the Multiscale Tracking of Biotic and Abiotic Variability in the Ocean. Environmental Modelling & Software, 42, pp. 47-54. https://doi.org/10.1016/j.envsoft.2012.12.006
  14. Golubeva, E. and Gradova, M., 2024. Numerical Study of the Riverine Microplastic Distribution in the Arctic Ocean. Water, 16(3), 441. https://doi.org/10.3390/w16030441
  15. Bleck, R., 2002. An Oceanic General Circulation Model Framed in Hybrid Isopycnic-Cartesian Coordinates. Ocean Modelling, 4(1), pp. 55-88. https://doi.org/10.1016/S1463-5003(01)00012-9
  16. Shchepetkin, A.F. and McWilliams, J.C., 2005. The Regional Oceanic Modeling System (ROMS): A Split-Explicit, Free-Surface, Topography-Following-Coordinate Oceanic Model. Ocean Modelling, 9(4), pp. 347-404. https://doi.org/10.1016/j.ocemod.2004.08.002
  17. Marshall, J., Adcroft, A., Hill, C., Perelman, L. and Heisey, C., 1997. A Finite-Volume, Incompressible Navier Stokes Model for Studies of the Ocean on Parallel Computers. Journal of Geophysical Research: Oceans, 102(C3), pp. 5753-5766. https://doi.org/10.1029/96JC02775
  18. Ibrayev, R.A., Khabeev, R.N. and Ushakov, K.V., 2021. Eddy-Resolving 1/10° Model of the World Ocean. Izvestiya, Atmospheric and Oceanic Physics, 48(1), pp. 37-46. https://doi.org/10.1134/S0001433812010045
  19. Kalmykov, V.V. and Ibrayev, R.A., 2013. A Framework for the Ocean-Ice-Atmosphere-Land Coupled Modeling on Massively-Parallel Architectures. Numerical Methods and Programming, 14(3), pp. 88-95 (in Russian).
  20. Maier-Reimer, E. and Sündermann, J., 1982. On Tracer Methods in Computational Hydrodynamics. In: M.B. Abbot and J.A. Cunge, eds., 1982. Engineering Applications of Computational Hydroulics. Boston, London, Melbourne: Pitman Advanced Publishing Program. Vol. 1, pp. 198-217.
  21. Gardiner, C.W., 1985. Handbook of Stochastic Methods for Physics, Chemistry and the Natural Sciences. Springer Series in Synergetics, vol. 13. Berlin, Heidelberg: Springer Berlin Heidelberg, 439 p. https://doi.org/10.1007/978-3-662-02452-2
  22. Hunter, J.R., Craig, P.D. and Philips, H.E., 1993. On the Use of Random Walk Models with Spatially Variable Diffusivity. Journal of Computational Physics, 106(2), pp. 366-376. https://doi.org/10.1016/S0021-9991(83)71114-9
  23. Visser, A.W., 1997. Using Random Walk Models to Simulate the Vertical Distribution of Particles in a Turbulent Water Column. Marine Ecology Progress Series, 158, pp. 275-281. https://doi.org/10.3354/meps158275
  24. Sunarko and Zaki Su'ud, 2016. Lagrangian Particle Method for Local Scale Dispersion Modeling. Journal of Physics: Conference Series, 739, 012122. https://doi.org/10.1088/1742-6596/739/1/012122
  25. Sadarjoen, A., Van Walsum, T., Hin, A.J.S. and Post, F.H., 1994. Particle Tracing Algorithms for 3D Curvilinear Grids. In: G. Nielson, H. Müller and H. Hagen, eds., 1994. Scientific Vizualization. Overviews. Methodologies. Techniques. Delft University of Technology, pp. 299-323.
  26. Griffies, S.M., Biastoch, A., Böning, C., Bryan, F., Danabasoglu, G., Chassignet, E.P., England, M.H., Gerdes, R., Haak, H. [et al.], 2009. Coordinated Ocean-Ice Reference Experiments (COREs). Ocean Modelling, 26(1-2), pp. 1-46. https://doi.org/10.1016/j.ocemod.2008.08.007

Download the article (PDF)