Monitoring Wind Waves in Golubaya Bay Using Shore-Based X-Band Radar During the November 2023 Black Sea Storm

E. A. Ezhova1, 2, ✉, S. A. Myslenkov1, 3, V. V. Ocherednik1

1 Shirshov Institute of Oceanology, Russian Academy of Sciences, Moscow, Russian Federation

2 Moscow Institute of Physics and Technology, Dolgoprudny, Russian Federation

3 Lomonosov Moscow State University, Moscow, Russian Federation

e-mail: ezhova.ea@phystech.edu

Abstract

Purpose. Extreme storm events provide unique conditions for assessing the performance of coastal wave-monitoring systems under severe conditions. In November 2023, an intense storm in the Black Sea generated significant wave heights exceeding 9 m offshore, with heights of 5–6 m recorded in the vicinity of Golubaya Bay. This study presents wave observations obtained using a shore-based X-band marine radar equipped with the SeaVision processing system.

Methods and Results. Prior to the storm, the wave-height retrieval algorithm was calibrated over a 10-day period using measurements from an Acoustic Doppler Current Profiler (ADCP). The calibration yielded a root-mean-square error (RMSE) of 0.35 m and a correlation coefficient of 0.77. Time series of wave parameters derived from radar observations (15–29 November 2023) were compared with in situ ADCP measurements, satellite altimetry data, Copernicus Marine Service (CMEMS) reanalysis, and WAVEWATCH III model simulations. The maximum significant wave height retrieved from the radar reached 6.3 m. The radar image processing algorithm enables the reconstruction of the wave frequency-directional spectra. Spectral analysis indicates that, during storm development, energy gradually shifts toward lower frequencies and the dominant period increases. The spectra and radar images also show a change in the incident angle of the wave crests into the bay – at the storm peak this angle shifts westward. Directional spectra derived from radar data can be assimilated or used as boundary conditions indifferent wave models.

Conclusions. The results demonstrate the capability of shore-based X-band radar systems to provide reliable, continuous monitoring of nearshore wave conditions, even during extreme storms, and highlight their value for validating numerical models.

Keywords

wind waves, extreme storm, Black Sea, Golubaya Bay, X-band radar, remote sensing, wave observation, wave model validation, WAVEWATCH III

Acknowledgements

This study was supported by state assignment FMWE-2025-0002. The authors express their gratitude to B. V. Divinsky for providing the ADCP data and valuable comments, S. Yu. Kuznetsov for helpful recommendations on the manuscript structure and N.D. Tilinina for coordinating the work.

For citation

Ezhova, E.A., Myslenkov, S.A. and Ocherednik, V.V., 2025. Monitoring Wind Waves in Golubaya Bay Using Shore-Based X-Band Radar During the November 2023 Black Sea Storm. Physical Oceanography, 32(6), pp. 887-901.

References

  1. Kantardgi, I.G., Zheleznyak, M.I. and Anshakov, A.S., 2019. Numerical Modeling of Nonlinear Hydrodynamics of the Coastal Areas. Magazine of Civil Engineering, (3), pp. 80-92. https://doi.org/10.18720/MCE.87.7
  2. Zhao, D., Toba, Y., Suzuki, Y. and Komori, S., 2003. Effect of Wind Waves on Air-Sea Gas Exchange: Proposal of an Overall CO2 Transfer Velocity Formula as a Function of Breaking-Wave Parameter. Tellus B: Chemical and Physical Meteorology, 55(2), pp. 478-487. https://doi.org/10.3402/tellusb.v55i2.16747
  3. Divinskiy, B.V. and Saprykina, Ya.V., 2024. Extreme Wind Waves on the Northeastern Shelf of the Black Sea. Doklady Earth Sciences, 517(1), pp. 1224-1233. https://doi.org/10.1134/S1028334X24601676
  4. Chelton, D.B., Ries, J.C., Haines, B.J., Fu, L.-L. and Callahan, P.S., 2001. Satellite Altimetry. In: L.-L. Fu and A. Cazenave, eds., 2001. Satellite Altimetry and Earth Sciences. A Handbook of Techniques and Applications. International Geophysics, vol. 69. Amsterdam : Academic Press, pp. 1-131. https://doi.org/10.1016/S0074-6142(01)80146-7
  5. Myslenkov, S.A., Kruglova, E.E., Medvedeva, A.Yu., Silvestrova, K.P., Arkhipkin, V.S., Akpinar, A. and Dobrolyubov, S.A., 2023. Number of Storms in Several Russian Seas: Trends and Connection to Large-Scale Atmospheric Indices. Russian Journal of Earth Sciences, 23(3), ES3002. https://doi.org/10.2205/2023ES000828
  6. Rybalko, A.D., Myslenkov, S.A. and Arkhipkin, V.S., 2023. Seasonal Variability of Wind Wave Spectra in the Black Sea and Sea of Azov. Oceanology, 63(S1), pp. S72-S82. https://doi.org/10.1134/S0001437023070172
  7. Cavaleri, L., 2009. Wave Modeling – Missing the Peaks. Journal of Physical Oceanography, 39(11), pp. 2757-2778. https://doi.org/10.1175/2009JPO4067.1
  8. Lund, B. and Graber, H.C. and Romeiser, R., 2012. Wind Retrieval from Shipborne Nautical X‑Band Radar Data. IEEE Transactions on Geoscience and Remote Sensing, 50(10), pp. 3800-3811. https://doi.org/10.1109/TGRS.2012.2186457
  9. Derkani, M.H., Alberello, A., Nelli, F., Bennetts, L.G., Hessner, K.G., MacHutchon, K., Reichert, K., Aouf, L., Khan, S. [et al.], 2021. Wind, Waves, and Surface Currents in the Southern Ocean: Observations from the Antarctic Circumnavigation Expedition. Earth System Science Data, 13(3), pp. 1189-1209. https://doi.org/10.5194/essd-2020-255
  10. Fujii, S., Heron, M.L., Kim, K., Lai, J.-W., Lee, S.-H., Wu, X., Wu, X., Wyatt, L.R. and Yang, W.-C., 2013. An Overview of Developments and Applications of Oceanographic Radar Networks in Asia and Oceania Countries. Ocean Science Journal, 48(1), pp. 69-97. https://doi.org/10.1007/s12601-013-0007-0
  11. Yurovsky, Yu.Yu., Malinovsky, V.V., Korinenko, A.E., Glukhov, L.А. and Dulov, V.A., 2023. Prospects for Radar Monitoring of Wind Speed, Wind Wave Spectra and Velocity of Currents from an Oceanographic Platform. Ecological Safety of Coastal and Shelf Zones of Sea, (3), pp. 40-54.
  12. Reichert, K., Hessner, K., Nieto Borge, J.C. and Dittmer, J., 1999. WaMoS-II: A Radar-Based Wave and Current Monitoring System. In: J. S. Chung, M. Olagnon, C. H. Kim, A. Francescutto, eds., 1999. Proceedings of the 9th International Offshore and Polar Engineering Conference (ISOPE’99), Brest, France, May 30–June 4, 1999. ISOPE, vol. 3, pp. 139-144.
  13. Tilinina, N., Ivonin, D., Gavrikov, A., Sharmar, V., Gulev, S., Suslov, A., Fadeev, V., Trofimov, B., Bargman, S. [et al.], 2022. Wind Waves in the North Atlantic from Ship Navigational Radar: SeaVision Development and Its Validation with the Spotter Wave Buoy and WaveWatch III. Earth System Science Data, 14(8), pp. 3615-3633. https://doi.org/10.5194/essd-14-3615-2022
  14. Dulov, V.A., Yurovskaya, M.V., Fomin, V.V., Shokurov, M.V., Yurovsky, Yu.Yu., Barabanov, V.S. and Garmashov A.V., 2024. Extreme Black Sea Storm in November, 2023. Physical Oceanography, 31(2), pp. 295-316.
  15. Yurovskaya, M.V., Shokurov, M.V., Barabanov, V.S., Yurovsky, Yu.Yu., Kudryavtsev, V.N. and Kamenev, O.T., 2024. Wind and Wave Hindcast and Observations during the Black Sea Storms in November 2023. Pure and Applied Geophysics, 181(11), pp. 3149-3171. https://doi.org/10.1007/s00024-024-03592-z
  16. Ivonin, D.V., Myslenkov, S.A., Chernyshov, P.V., Arkhipkin, V.S., Telegin, V.A., Kuklev, S.B., Chernyshova, A.Y. and Ponomarev, A.I., 2013. Monitoring System of Wind Waves in Coastal Area of the Black Sea Using Coastal Radars, Direct Wave Measurements and Modeling: First Results. Regional Environmental Issues, (4), pp. 172-182 (in Russian).
  17. Ivonin, D.V., Telegin, V.A., Chernyshov, P.V., Myslenkov, S.A. and Kuklev, S.B., 2016. Possibilities of X-band Nautical Radars for Monitoring of Wind Waves near the Coast. Oceanology, 56(4), pp. 591-600. https://doi.org/10.1134/S0001437016030103
  18. Zatsepin, A.G., Gorbatskiy, V.V., Myslenkov, S.A., Shpilev, N.N., Dudko, D.I., Ivonin, D.V., Silvestrova, K.P., Baranov, V.I., Telegin, V.A. [et al.], 2017. Comparison of Coastal Currents Measured by HF and X-Band Radars with ADCP and Drifter Data at the IO RAS Hydrophysical Test Site in the Black Sea. Sovremennye Problemy Distantsionnogo Zondirovaniya Zemli iz Kosmosa, 14(7), pp. 250-266. https://doi.org/10.21046/2070-7401-2017-14-7-250-266 (in Russian).
  19. Divinskiy, B.V. and Kuklev, S.B., 2022. Experiment of Wind Wave Parameter Research on the Black Sea Shelf. Oceanology, 62(1), pp. 8-12. https://doi.org/10.1134/S0001437022010040
  20. Zatsepin, A.G., Ostrovskii, A.G., Kremenetskiy, V.V., Nizov, S.S., Piotukh, V.B., Soloviev, V.A., Shvoev, D.A., Tsibul’sky, A.L., Kuklev, S.B. [et al.], 2014. Subsatellite Polygon for Studying Hydrophysical Processes in the Black Sea Shelf–Slope Zone. Izvestiya, Atmospheric and Oceanic Physics, 50(1), pp. 13-25. https://doi.org/10.1134/S0001433813060157
  21. Ezhova, E.A., Gavrikov, A.V., Sharmar, V.D., Tilinina, N.D., Suslov, A.I., Koshkina, V.S., Krinitskiy, M.A., Gladyshev, V.S. and Borisov, M.A., 2023. Obtaining Wind Waves Parameters Using Ship Radar. Oceanology, 63(S1), pp. S42-S53. https://doi.org/10.1134/S0001437023070032
  22. Zatsepin, A.G., Piotouh, V.B., Korzh, A.O., Kukleva, O.N. and Soloviev, D.M., 2012. Variability of Currents in the Coastal Zone of the Black Sea from Long-Term Measurements with a Bottom Mounted ADCP. Oceanology, 52(5), pp. 579-592. https://doi.org/10.1134/S0001437012050177
  23. Ryabkova, M.S., Titchenko, Yu.A., Karaev, V.Yu., Meshkov, E.M., Belyaev, R.V., Yablokov, A.A., Baranov, V.I. and Ocherednik, V.V., 2021. Measurement of Statistical Characteristics of the Sea Surface Using an Underwater Acoustic Wave Gauge in the Black Sea and Comparison with ADCP. Sovremennye Problemy Distantsionnogo Zondirovaniya Zemli iz Kosmosa, 18(2), pp. 189-204. https://doi.org/10.21046/2070-7401-2021-18-2-189-204 (in Russian).
  24. Baranov, V.I., Zatsepin, A.G., Kuklev, S.B., Ocherednik, V.V. and Mashura, V.V., 2024. New Measuring and Data Transmission Equipment for Operational Oceanography at the Gelendgik Black Sea Test Site of the Shirshov Institute of Oceanology, Russian Academy of Sciences. Oceanology, 64(1), pp. 122-130. https://doi.org/10.1134/S000143702401003X
  25. Young, I.R., Rosenthal, W. and Ziemer, F., 1985. A Three-Dimensional Analysis of Marine Radar Images for the Determination of Ocean Wave Directionality and Surface Currents. Journal of Geophysical Research: Oceans, 90(C1), pp. 1049-1059. https://doi.org/10.1029/JC090iC01p01049
  26. Nieto Borge, J., RodrÍguez, G.R., Hessner, K. and González, P.I., 2004. Inversion of Marine Radar Images for Surface Wave Analysis. Journal of Atmospheric and Oceanic Technology, 21(8), pp. 1291-1300. https://doi.org/10.1175/1520-0426(2004)021%3C1291:IOMRIF%3E2.0.CO;2
  27. Ziemer, F. and Dittmer, J., 1994. A System to Monitor Ocean Wave Fields. In: IEEE, 1994. Proceedings of OCEANS’94, Brest, France. IEEE, vol. 2, pp. II/28-II/31. https://doi.org/10.1109/OCEANS.1994.364010
  28. Ezhova, E., Tilinina, N., Gulev, S., Sharmar, V., Gavrikov, A., Trofimov, B., Bargman, S., Koltermann, P., Grigorieva, V. [et al.], 2025. Real-Time Open Ocean Wind Waves from Navigation Radars for a Truly Global Wind Wave Observing System. Applied Ocean Research, 165, 104867. https://doi.org/10.1016/j.apor.2025.104867
  29. Ezhova, E.A., Gavrikov, A.V. and Tilinina, N.D., 2024. The Validity Domain of Satellite Altimetry Data for Validation of Algorithms for Estimation Wind Wave Height. Journal of Oceanological Research, 52(4), pp. 39-55. https://doi.org/10.29006/1564-2291.JOR-2024.52(4).3 (in Russian).
  30. Shrira, V.I., Badulin, S.I. and Voronovich, A.G., 2003. Electromagnetic Wave Scattering from the Sea Surface in the Presence of Wind Wave Patterns. International Journal of Remote Sensing, 24(24), pp. 5075-5093. https://doi.org/10.1080/0143116031000095907
  31. Medvedev, I.P. and Arkhipkin, V.S., 2015. Sea Level Oscillations in the Golubaya Bay (the Town of Gelendzhik). Vestnik Moskovskogo Universiteta. Series 5: Geography, (3), pp. 70-78 (in Russian).
  32. Rabinovich, A.B., 2009. Seiches and Harbor Oscillations. In: Y. C. Kim, ed., 2009. Handbook of Coastal and Ocean Engineering. Singapore: World Scientific Publishing, pp. 193-236. https://doi.org/10.1142/9789812819307_0009
  33. Bertin, X., De Bakker, A., Van Dongeren, A.P., Coco, G., André, G., Ardhuin, F., Bonneton, P., Bouchette, F., Castelle, B. [et al.], 2018. Infragravity Waves: From Driving Mechanisms to Impacts. Earth-Science Reviews, 177, pp. 774-799. https://doi.org/10.1016/j.earscirev.2018.01.002
  34. Gao, X., Hu, Z., Jiang, J. and Jiang, Y., 2025. Analysis of Infragravity Waves Characteristics and Energy Evaluation Based on Field Observations. Frontiers in Marine Science, 12, 1627163. https://doi.org/10.3389/fmars.2025.1627163
  35. Plant, W.J. and Farquharson, G., 2012. Origins of Features in Wave Number-Frequency Spectra of Space-Time Images of the Ocean. Journal of Geophysical Research: Oceans, 117(C6), C06015. https://doi.org/10.1029/2012JC007986
  36. Yurovsky, Yu.Yu., Kudryavtsev, V.N., Grodsky, S.A. and Chapron, B., 2018. Low-Frequency Sea Surface Radar Doppler Echo. Remote Sensing, 10(6), 870. https://doi.org/10.3390/rs10060870
  37. Boukhanovsky, A.V. and Lopatoukhin, L.I., 2015. Storms Statistics at Sea (Alternative Approach). Fundamental and Applied Hydrophysics, 8(4), pp. 86-91 (in Russian).
  38. Divinsky, B.V., Fomin, V.V., Kosyan, R.D. and Ratner, Y.D., 2020. Extreme Wind Waves in the Black Sea. Oceanologia, 62(1), pp. 23-30. https://doi.org/10.1016/j.oceano.2019.06.003
  39. Gippius, F.N. and Myslenkov, S.A., 2020. Black Sea Wind Wave Climate with a Focus on Coastal Regions. Ocean Engineering, 218, 108199. https://doi.org/10.1016/j.oceaneng.2020.108199
  40. Malinovsky, V.V. and Korinenko, A.E., 2008. Identification of the Sea Surface Pollution Using Radar Data. Ecological Safety of Coastal and Shelf Zones and Comprehensive Use of Shelf Resources, 16, pp. 84-90 (in Russian).
  41. Ermoshkin, A.V., Kapustin, I.A., Bogatov, N.A., Molkov, A.A., Poplavsky, E.I., Rusakov, N.S. and Yunisov, A.R., 2021. Development of a Radar Complex for Oil Spill Detection. Sovremennye Problemy Distantsionnogo Zondirovaniya Zemli iz Kosmosa, 18(6), pp. 99-108. https://doi.org/10.21046/2070-7401-2021-18-6-99-108 (in Russian).
  42. Korinenko, A.E. and Malinovsky, V.V., 2025. Wind Field Retrieval in the Coastal Zone Using X-Band Radar Data at Large Incidence Angles. Ecological Safety of Coastal and Shelf Zones of Sea, (1), pp. 26-41.

Download the article (PDF)