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Abstract 
Purpose. The work aims to study the vertical momentum transfer by internal waves at the exit of 
the Strait of Gibraltar into the Mediterranean Sea, accounting for turbulent viscosity and diffusion.  
Methods and Results. In contrast to the traditional approach relating vertical momentum transfer to 
small-scale turbulence, the present study examines the wave transport mechanism. The wave field is 
described using classical hydrodynamic equations for a stratified incompressible fluid with shear 
flow, incorporating turbulent viscosity and diffusion. The boundary value problem for the vertical 
velocity amplitude of internal waves, which conditions the mode structure, is solved numerically. In 
the linear approximation, the complex nature of the coefficients results in a complex solution, leading 
to a non-zero vertical wave momentum flux. The impact of horizontal turbulent viscosity and 
diffusion on this flux is investigated. Three models are compared: the first one – with constant 
exchange coefficients (basic case), the second – with exchange coefficients depending on 
phenomenon scale according to the “4/3” law, and the third – with coefficients of horizontal exchange 
taking into account stratification. It is shown that when the dependence of exchange coefficients on 
the phenomenon scale according to the “4/3” law is taken into account, the momentum flux is higher 
in magnitude than that with constant coefficients, but lower than the fluxes taking into account 
stratification. The same pattern holds for the vertical component of the Stokes drift velocity. 
The choice of exchange coefficients has virtually no effect on the horizontal component of the Stokes 
drift velocity. 
Conclusions. The dispersion curves of internal waves are independent of the choice of exchange 
coefficients. However, the wave attenuation decrement is sensitive to this choice: it is higher in 
magnitude when the exchange coefficients depend on the phenomenon scale according to the “4/3” 
law compared to the case of constant exchange coefficients, and even higher in absolute value when 
stratification is taken into account. The same pattern holds true for the vertical wave momentum flux. 
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Introduction 
Vertical momentum transport is typically attributed to small-scale turbulence 

generated by wind, currents and the breaking of surface and internal waves 1 [1–8]. 
In addition to internal wave breaking, a “gentle” regime sustains turbulence 
previously generated by velocity shear within an internal wave [9]. Similarly, in 

1 Monin, A.S. and Ozmidov, R.V., 1985. Turbulence in the Ocean. Environmental Fluid 
Mechanics Series. Dordrecht, Boston, Lancaster: D. Reidel Publishing Company, 247 p. 
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shear currents with near-critical Richardson numbers, the flow may sustain 
turbulence without breaking [10]. In the bottom layer, small-scale turbulence can 
arise within the bottom boundary layer due to the interaction of currents and tides 
with irregular bottom topography [11]. Notably, three-dimensional internal waves 
can be trapped by a sloping bottom when the bottom slope aligns the group 
velocity vector of the reflected wave parallel to the bottom, converting the energy 
of the wave into turbulence [12]. 

In shear currents at critical layers, where the current velocity matches 
the phase velocity of internal waves, “cat’s eye” vortex structures can emerge [13, 
14]. Small-amplitude internal waves are significantly attenuated by small-scale 
turbulence, whereas large-amplitude waves experience minimal attenuation but can 
enhance turbulence [15, 16]. As internal waves propagate through a horizontally 
inhomogeneous ocean into regions of shallower depths, their amplitude increases, 
leading to pronounced nonlinear effects and energy dissipation into turbulence. 
A similar mechanism is observed in a horizontally inhomogeneous waveguide: 
internal wave propagation results in wave trapping and focusing, leading to energy 
dissipation into turbulence [17]. Internal waves often propagate as wave packets 
[18, 19]. During the propagation of weakly nonlinear internal wave packets, 
second-order mean currents are induced relative to the wave amplitude [20, 21]. 
At the leading and trailing edges of these wave packets, the vertical component of 
the induced current has opposite signs, resulting in no vertical transport. 

Internal waves, even without breaking, contribute to vertical exchange in 
the ocean. In a dissipative medium with viscosity and diffusion, internal waves 
undergo attenuation [22–24]. When turbulent viscosity and diffusion are 
considered, the phase shift between vertical and horizontal velocity oscillations 
deviates from π/2, resulting in non-zero vertical wave momentum flux [25–31]. 
This arises because the eigenfunction equation for internal waves includes complex 
coefficients, yielding a complex solution to the corresponding boundary value 
problem [32, 33], with the wave frequency exhibiting a small imaginary part 2 [34–
39]. Historically, horizontal turbulent exchange coefficients were assumed to be 
constant and independent of the phenomenon’s scale [27–31]. However, work [26] 
accounted for the dependence of the horizontal turbulent exchange coefficient on 
the phenomenon’s scale according to the “4/3” law 3, 4: 

4/3
1 .M c l= ⋅               (1) 

The 1с  proportionality coefficient in this law is independent of stratification, 
and a special case is considered where the wave propagates perpendicular to 
the flow, enabling an analytical solution with a constant buoyancy frequency. 

This study utilizes real stratification and current profiles derived from field 
experiment data at the exit of the Strait of Gibraltar into the Mediterranean Sea. 

2 Vorotnikov, D.I., 2024. [Transport Processes Caused by Inertial-Gravity Internal Waves]. 
Thesis Cand. Phys.-Math.Sci. Moscow, 108 p. (in Russian). 

3 Ozmidov, R.V., 1968. [Horizontal Turbulence and Turbulent Exchange in the Ocean]. 
Moscow: Nauka, 200 p. (in Russian). 

4 Ozmidov, R.V., 1986. [Diffusion of Impurities in the Ocean]. Leningrad: Gidrometeoizdat, 
278 p. (in Russian). 
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It incorporates the dependence of the horizontal exchange coefficient on 
the phenomenon’s scale via the “4/3” law, with the 1с  proportionality coefficient 
linked to the Brunt–Väisälä frequency, based on drifter experiment data [40, 41]. 
These data indicate that the horizontal exchange coefficient is proportional to 
the product of the velocity scale V and the length scale L, where the length scale is 
determined by the baroclinic Rossby radius of deformation, which is proportional 
to the depth-averaged buoyancy frequency 5. 

This study aims to quantify the vertical wave momentum flux of internal waves, 
incorporating the dependence of horizontal exchange coefficients on 
the phenomenon’s scale via the “4/3” law and on the buoyancy frequency. 

Problem formulation 
In the Boussinesq approximation, this study examines free progressive internal 

waves in an unbounded sea of constant depth in the presence of a shear current 
[25–31]. Unlike previous models that assumed constant horizontal turbulent 
exchange coefficients [25–31], this work incorporates coefficients that vary with 
the vertical coordinate and the horizontal scale of the phenomenon. In the linear 
approximation, the amplitude and dispersion characteristics of internal waves are 
determined, while in the second-order approximation with respect to wave 
amplitude, the vertical wave momentum flux and Stokes drift velocity components 
are calculated [25–27]. 

The system of hydrodynamic equations governing wave perturbations is as 
follows [25–31]: 

0

0 0

1 ρ
ρ ρ h

D dw P K
Dt dz

+ = − ∇ + + ∆
U gu u ,       (2) 

0
ρ ( )ρ ρh

D M
Dt

+ ∇ = ∆u ,        (3) 

0div =u ,         (4) 

where ( , , )u v wu  is the vector of wave-induced current velocity perturbations; 
x-axis of the Cartesian three-dimensional coordinate system is directed along 
the mean plane-parallel current; z -axis is directed opposite to the gravitational 
acceleration vector g ; 0U  ( )0 ( ), 0, 0U z  is the mean current velocity vector; ρ , P
are the wave-induced density and pressure perturbations [25–39]; 0ρ ( )z  is 
the unperturbed mean density; ,K M  are the coefficients of horizontal turbulent 

viscosity and diffusion; the action of the D
Dt

operator is defined as 

5 Belonenko, T.V. and Novoselova, E.V., 2019. [A Method for Estimating the Baroclinic Rossby 
Deformation Radius: A Textbook]. Saint Petersburg: SPbGU, 25 p. (in Russian). 
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( )( )D
Dt t

∂
= + + ∇
∂

0u U [25–39]. The boundary conditions are the “rigid lid” 

condition at the surface [22, 25–39] and the “free-slip” condition at the bottom [23, 
25–31]. 

Linear approximation. The solutions of the linear approximation for 
a progressive wave have the following form [25–39]: 

{ } { }1 1 1( ) ( ) ( ) exp( ( ω )) c.c., , ρ , , ρA z z z i kx tP P= − +u u           (5) 

The substitution of formula (5) into the system (2)–(4) leads to a system of 
equations connecting the amplitude functions 1 1 1, ρ ,u P  with 1w  [25–31]: 

1
1

dwiu
k dz

= ,            0ω k UΩ = − ⋅ , 

01 1 1
1

0ρ (0)
dUP dw dwi w ikK

k k dz dz dz
Ω = + +  

, 

01
1 2

ρρ ,dw
i k M dz

=
Ω −

    1 0v = . 

The amplitude function of the vertical velocity 1( )w z  satisfies the equation 

2
1 1

12 ( ) ( ) 0,d w dwa z b z w
dz dz

+ + =    (6) 

where 

2

2( ) ik Ka z
ik K z

∂
= ⋅
Ω + ∂

,  ( )( ) ( )

2
0

2 2
2

2 2 2
( ) 1

d U
N dzb z k

ik M ik K k ik K

 
 

= + − 
Ω + Ω + Ω + 

  

, 

2 0

0

ρ
ρ (0)

dgN
dz

= −  is square of the buoyancy frequency 2 [25–39]. 

Boundary conditions for the function 1( )w z  [25–39]): 

   1 1(0) ( ) 0w w H= − = .        (7) 

Non-linear effects. The two components of the Stokes drift velocity are 
determined by the formulas [42, 25–31]) 

* *
1 1 1

s 1
1 c.c.
ω

A A dwdu w
k dz dz

  
= +  

  
,         (8) 
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( )* *
s 1 1 1 1*

1 1
ω ω

dw iA A w w
dz

 = −  
,         (9) 

where 1 exp(δω )A A t= ⋅ , δω Im(ω)= . Accounting for turbulent viscosity and 
diffusion leads to the wave frequency having a small imaginary part, and 
the vertical component of the Stokes drift velocity (9) is not equal to zero [25–31]. 
The influence of turbulent viscosity and diffusion on the horizontal component of 
the Stokes drift velocity (8) is considered below. 

The vertical wave momentum flux uw  is determined by formula 2 [25–27, 29, 
31–35, 38]  

*
2 * 1 1

1 1 1
dw dwiuw A w w

k dz dz
 

= − 
 

.         (10) 

The solution to the boundary value problem (6), (7) is comlex, therefore 
the momentum flux uw  (10) is non-zero. 

Calculation results and their analysis 
To calculate the vertical wave momentum flux, this study uses field experiment 

data from the Strait of Gibraltar [43]. The experiment employed remote sensing and 
in-situ measurements to detect intense internal waves with amplitudes up to 16 m, 
identifying the first mode with a period of 14 minutes. Phase velocity estimates, 
derived from both measurement data and theoretical calculations using numerical 
solutions of the Taylor–Goldstein equation with current velocity and buoyancy 
frequency profiles (Fig. 1), demonstrate good agreement [43]. 

Previously, we assumed that 2 11 m sM −=   on the considered scales. This study 
accounts for the dependence of the horizontal turbulent exchange coefficient on 
the phenomenon’s scale and the Brunt–Väisälä frequency. Notably, stratification 
inhibits vertical exchange and suppresses small-scale turbulence but does not 
impede horizontal exchange; rather, it enhances it [44]. This is supported by field 
experiment data used to determine the horizontal turbulent exchange coefficients 
[45]. The resulting vertical profiles of this coefficient reveal an increase in 
the pycnocline region in the absence of cyclones. Therefore, we employ a modified 
Riley formula [44]: 

0
0

( )1 N zM M
N

 
= + 

 
,           (11) 

where 0M  is the coefficient of horizontal turbulent exchange in a homogeneous 
fluid, which depends on the phenomenon’s scale l according to the “4/3” law: 

4/3
0 1M c l= ⋅ ,               (12) 

here the 1c  coefficient, based on measurement data from a large basin, is 
2 / 3 1

1 0.01 cm sc −= ⋅  (based on work 3). From formulas (11) and (12), we determine 
the coefficient of horizontal turbulent exchange in the presence of stratification: 
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4/3 / 4/3
1 1

0

( )1 N zM c l С l
N

 
= + ⋅ = ⋅ 

 
.        (13) 

F i g.  1. Dependence of buoyancy frequency (a) and current velocity (b) on the vertical coordinate 

Here, ( )N z  represents the Brunt–Väisälä frequency in cycles per hour, with 

0 5N = cph. This value of 0N  ensures that the empirical values of the 1c
coefficient (see work 3 and [46]) in the “4/3” law (1) align with the range of 
the /

1 ( )С z  function. The scale of the phenomenon in formulas (1) and (13) is defined 
as the wavelength, i.e., 2π /l k= . The boundary value problem described by (6) and 
(7) is solved numerically using a second-order implicit Adams scheme at 2K M=  
[26]. For a fixed real part of the wave frequency 0ω , the wavenumber and wave 
decay rate are determined using the shooting method 2 [25–31, 34–39]. 
The calculation results are compared for the turbulent exchange coefficient – fixed 
( 2 11 m sM −=  ) and dependent on the phenomenon’s scale according to the “4/3” law, 
for both a constant value of 2 / 3 1

1 0.01 cm sc −= ⋅  in formula (1) and for the case of 
dependence (formula (13)) of the exchange coefficient on stratification. 

Fig. 2 presents the dispersion curves for the first mode in three cases. These 
dispersion curves are nearly identical, indicating that the real part of the wave 
frequency is largely insensitive to the dependence (1) of the exchange coefficient 
on the l scale and the dependence (13) of the exchange coefficient on the buoyancy 
frequency. However, the imaginary part of the wave frequency exhibits a notable 
dependence on the choice of the horizontal turbulent exchange coefficient (Fig. 3). 
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F i g.  2. Dispersion curves of the first 
mode of internal waves at three variants 
for choosing the coefficient of horizontal 
turbulent exchange 

F i g.  3. Dependence of the wave attenuation 
decrement on wave number for three values of 
the horizontal exchange coefficient M: 2 11 m s−  (red 
curve); calculated using formula (1) (blue curve) and 
using formula (13) (green curve) 

F i g.  4. Profiles of the vertical wave momentum 
flux uw  at the exchange coefficients M: 2 11 m s−  (red 
curve); calculated using formula (1) (blue curve) and 
using formula (13) (green curve) 

Hereafter, we assume that 
constant exchange coefficients 
correspond to variant 1, exchange 
coefficients dependent on 
the phenomenon’s scale according to 
the “4/3” law correspond to variant 2, 
and variant 3 corresponds to formula 
(13), which accounts for 
the dependence of the horizontal 
turbulent exchange coefficient on 
the Brunt–Väisälä frequency. 
The wave decay rate for variant 2 
(blue curve) in Fig. 3 is greater in 
magnitude than that for variant 1 (red 
curve) but smaller than that 
for variant 3 (green curve). 
The wavenumber of 14-minute 
internal waves of the lowest mode is 

33.96 10−⋅  rad/m [27, 30]. 
The normalization factor 1A  is 
determined based on the known 
maximum amplitude of vertical 
displacements 2 [25–39]. 

Similar calculations for the three variants of the turbulent exchange coefficient 
were conducted to evaluate the vertical wave momentum flux uw (10) for 14-
minute internal waves of the first mode (Fig. 4).  
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In variant 2, where the turbulent exchange coefficient depends on 
the phenomenon’s scale according to formula (1), the vertical wave momentum 
flux is noticeably greater in absolute value than in variant 1, when 2 11 m sM −=   , but 
lower in magnitude than the momentum flux in variant 3. Calculations for the two 
components of the Stokes drift velocity were conducted similarly for the three 
variants of the turbulent exchange coefficient (Figs. 5, 6). 

F i g.  5. Vertical distribution of horizontal 
component of the Stokes drift velocity 

F i g.  6. Dependence of vertical component of 
the Stokes drift velocity on depth for three values 
of the horizontal exchange coefficient M: 

2 11 m s−  (red curve); calculated using formula (1) 
(blue curve) and using formula (13) (green 
curve) 

The choice of the exchange coefficient has minimal influence on the horizontal 
component of the Stokes drift velocity (8). Fig. 6 presents the calculation results 
for the vertical component of the Stokes drift velocity (9). The magnitude of this 
velocity component in variant 1 is smaller than in variant 2, which, in turn, is 
smaller than in variant 3. 

Conclusion 
The vertical wave momentum flux of internal waves, when accounting for 

horizontal turbulent viscosity and diffusion, is non-zero. This results from 
the complex coefficients in the equation for the vertical velocity amplitude, 
rendering the solution to the boundary value problem (6), (7) complex. The wave 
frequency is also complex, with a small imaginary part representing the wave 
decay rate, which is determined during the solution of this boundary value 
problem. A phase shift different from π / 2  exists between the components of 
the wave velocity perturbations, resulting in a non-zero vertical wave momentum 
flux. For a constant turbulent exchange coefficient 2 11 m sM −=  , the vertical wave 
momentum flux is significantly smaller in magnitude than when the exchange 
coefficient depends on the phenomenon’s scale according to formula (1). 
In the latter case, the momentum flux is noticeably smaller in absolute value than 
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when the exchange coefficient is governed by formula (13), which accounts for 
stratification. The choice of the exchange coefficient has minimal impact on 
the dispersion curves; however, the wave decay rate is sensitive to this choice. 

The wave decay rate for 2 11 m sM −=   is the smallest in magnitude. It increases 
when the exchange coefficient is determined by formula (1) and becomes 
the largest in absolute magnitude when calculated using formula (13) at a constant 
wavenumber. The horizontal component of the Stokes drift velocity is largely 
independent of the choice of the turbulent exchange coefficient, whereas 
the vertical component is significantly greater in absolute magnitude when 
the turbulent exchange coefficient depends on the phenomenon’s scale according to 
formula (1), compared to the case of a constant exchange coefficient 2 11 m sM −=  . 
The dependence (13), which accounts for the influence of stratification on 
the coefficient of vertical turbulent exchange, further increases the vertical 
component of the Stokes drift velocity. The vertical component of the Stokes drift 
velocity plays a significant role in the vertical transport of heat and salt. 
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