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Abstract 
Purpose. This study aims to evaluate the vertical turbulent diffusion coefficient in the lower part of 
the main pycnocline in the areas of continental slope and deep waters of the Black Sea.  
Methods and Results. Data were collected during the 87th cruise of R/V Professor Vodyanitsky in 
the central sector of the northern Black Sea from June 30 to July 18, 2016. Profiles of temperature, 
salinity, and current velocity were obtained using CTD/LADCP probes. A method applying the G03 
parameterization to a layer ~ 200 m thick, spanning isopycnals with conditional densities between 
15.5 and 16.8 kg/m3, is proposed. To suppress measurement noise, isopycnal averaging across 
the station ensemble and approximation of the resulting parameter profiles using power functions 
were employed. Differences in the transfer functions for CTD and LADCP data processing were 
accounted for when integrating the canonical spectrum of internal waves. Data from 20 deep-sea 
stations enabled the derivation of buoyancy frequency profile averaged over the isopycnals, revealing 
layers of its power and exponential dependences on depth. The methodological challenges of applying 
the G03 parameterization to the lower part of the Black Sea’s main pycnocline are discussed in detail, 
including graphical data presentation. The profiles of the vertical turbulent diffusion coefficient 03GK  
indicate a nearly constant value of ~ 2⋅10–6 m2/s in the continental slope region, while in the deep 
waters of the sea, it increases linearly with depth from 1⋅10–6 m2/s to 2⋅10–6 m2/s. The maximum 
calculated heat flux reaches 12 mW/m2, confirming its negligible impact on the heating of the cold 
intermediate layer. The salt flux at the upper boundary of the layer is 6⋅10-5 g/(m2⋅s) in the continental 
slope region and ~ 3⋅10–5 g/(m2⋅s) in the deep waters. At the lower boundary of the layer, salt fluxes 
are nearly identical in both regions, approximately ~ 5⋅10–6 g/(m2⋅s). The shear-to-strain ratio exhibits 
a pronounced increase with depth, highlighting significant differences in the characteristics of small-
scale processes at the boundaries of the lower part of the main pycnocline. 
Conclusions. The vertical turbulent diffusion coefficient estimated using the G03 parameterization 
agrees well with the values obtained from the microstructural sounding in other marine regions. 
However, the comparability of these estimates remains unresolved and requires synchronous 
measurements using microstructural and CTD/LADCP probes.  
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Introduction 
Vertical turbulent mixing significantly influences the intensity of 

biogeochemical processes in the marine environment [1] and plays a critical role in 
the formation of water masses, maintenance of stratification and modulation of 
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ocean circulation [2]. These factors explain the sustained interest of 
oceanographers in studying its characteristics under natural conditions over many 
decades [3]. 

Vertical mixing in a stratified marine environment is primarily driven by 
the breaking of internal waves and shear instability [4]. The majority of turbulent 
energy is concentrated at scales of less than one meter [4, 5], necessitating 
measurements with centimeter-scale resolution [6]. Currently, estimates of vertical 
turbulent mixing parameters derived from microstructural probe data are 
considered the most reliable [1]. However, the use of microstructural probes is 
limited by the high cost of equipment and the time-intensive nature of 
measurements [7]. In the deep part of the Black Sea, such measurements have been 
concluded only three times [1, 8, 9]. In the oxycline, the vertical turbulent diffusion 
coefficient ranged from (1–4)⋅10⁻6 m2/s [8], while in the main pycnocline, data 
from a single station indicated values of (4–6)⋅10⁻6 m2/s [1]. Overall, measurements 
using microstructural probes suggest a relatively low intensity of vertical mixing in 
the main pycnocline of the Black Sea. 

An alternative estimate of the vertical turbulent diffusion coefficient can be 
derived from synchronous measurements of density and current velocity profiles 
with a depth resolution of ~ 10 m. For example, in the Black Sea, data from an 
autonomous Aqualog probe deployed at the shelf edge near Gelendzhik [10] were 
used to investigate the temporal variability of vertical mixing through 
a parameterization based on Richardson number values [11, 12]. Another source of 
such data are areal hydrological surveys conducted during expeditions of Marine 
Hydrophysical Institute since 2004 [13]. These data are expected to provide new 
preliminary insights into the spatial structure of vertical mixing parameters. 

This study aims to investigate the vertical distribution of turbulent mixing 
parameters in the main pycnocline across the continental slope and deep part of 
the Black Sea. To estimate the vertical turbulent diffusion coefficient, the G03 
parameterization [14] was applied. This parameterization was selected due to 
the strong agreement between the calculated vertical turbulent mixing parameters 
and values derived from microstructural probe measurements [6, 7, 15–17]. 
The parameterization was introduced in the theoretical work [18], further 
developed in [19] and presented in its final form in [14]. In modern scientific 
literature, this parameterization is sometimes referred to as GHP (Gregg – 
Henyey – Polzin). 

 
Instruments and data 

This study uses data on salinity, temperature and current velocity collected 
during the 87th cruise of the R/V Professor Vodyanitsky, conducted in the northern 
part of the Black Sea (31–36.5°E, 43–45°N) from June 30 to July 18, 2016. 
Temperature and salinity profiles were measured using an SBE 911plus CTD probe 
with a depth resolution of 1 m. Horizontal current velocity components were 
measured with a lowered acoustic Doppler current profiler (LADCP), specifically 
the WHM300 by RDI. The following operating parameters of the profiler were set 
as follows: bin size of 4 m, application of the broadband method, time 
discretization of 1 s and a lowering/raising velocity of ~ 0.5 m/s. Data processing 
was performed taking in accordance with the recommendations in [13]. A total of 
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106 stations were sampled, with LADCP/CTD measurements conducted to a depth 
of at least 350 m at 65 stations (Fig. 1); at 20 stations, CTD measurements 
extended to a depth of 1900 m [20]. 

 

 
 
F i g.  1. Station locations against the background of the sea surface temperature (SST) distribution 
during the 87th cruise of R/V Professor Vodyanitsky. Blue arrows show current velocity at a depth of 
12 m, with arrow tips corresponding to station positions (65 stations total) 

 
Water dynamics. The current velocity distribution at a depth of 12 m (Fig. 1) 

qualitatively confirms the cyclonic nature of the large-scale circulation in the Black 
Sea within the measurement area. The highest velocities were observed near 
the southern coast of the Crimean Peninsula. No distinct eddy formations were 
identified. During the cruise, measurements were conducted with nearly equal 
coverage of both the continental slope and the deep part of the sea. 

Hydrology. It is well established that in the main pycnocline of the Black Sea, 
isopycnal surfaces exhibit a domed shape due to the cyclonic nature of the large-
scale circulation [21]. Their depth increases from the center of the sea towards 
the periphery. In the measurement area, the depth difference of an isopycnal 
surface can reach 70 m or more [22]. In this study, isopycnal averaging was applied 
to mitigate the influence of the domed shape of isopycnal surfaces on the accuracy 
of averaged hydrological parameter profiles. 

The isopycnal averaging algorithm is as follows. The conditional density profile 
(σt ) from the station with the deepest CTD measurement was used as the reference 
set of values. For each value, an array of initial data was constructed for the entire 
station ensemble using linear interpolation, and the mean values of the parameters, 
including depth, were calculated. This approach ensured a relatively uniform depth 
resolution for the isopycnally averaged dependencies. 

To calculate the vertical turbulent diffusion coefficient (K) within a specific 
layer, isopycnal averaging of the buoyancy frequency ( ρρ2

zgN ⋅= , where g  is 
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the acceleration due to gravity, ρ  is the reference density, zρ  is its vertical 
derivative) was performed using an ensemble of 20 deep-sea CTD profiles (Fig. 2, 
left). Note that such deep-sea measurements in the Black Sea are extremely rare 
[23], which partially motivated the presentation of the averaged profile across 
the entire water column. The layer exhibiting a power-law dependence of N on 
depth (red line) is highlighted by red dashed lines and is the focus of this study. 
Other researchers have observed a power-law dependence extending to a depth of 
750 m [24], which may result from averaging over depth horizons. From 350 to 
1500 m, N demonstrates an exponential dependence on depth (purple line). 
The parameters of this dependence differ slightly from those used in the canonical 
internal wave spectrum GM76 [25, 26]. The layer below 1500 m is examined in 
detail in [20]. To provide a clearer visualization of the layer under consideration 
(highlighted by solid colored lines), Fig. 2, right presents profiles of temperature 
(T), salinity (S) and buoyancy frequency (N), isopycnally averaged over an 
ensemble of 65 stations. Although the power-law dependence of the buoyancy 
frequency on depth is observed within the conditional density range of 15–
16.8 kg/m³, the isopycnal surface at 5.15σ =t  kg/m³ was selected as the upper 
boundary of the layer under consideration. This choice is attributed to 
the emergence of a pronounced dependence on horizontal coordinates in 
the distribution of N on isopycnal surfaces near 15σ =t  kg/m³ [27]. For these 
calculations, a different mathematical approach is used compared to the one 
applied in this study. 
 

 
 
F i g.  2. Buoyancy frequency profile averaged over the isopycnal surfaces of the 20-station ensemble 
(left) and temperature, salinity and buoyancy frequency profiles averaged over the isopycnal surfaces 
of the 65-station ensemble (right)  
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Further in the work, the stations were divided into two subgroups: one located 
in the continental slope area (29 stations) with depths less than 1600 m, and 
the other in the deep part of the sea (36 stations) with depths greater than 1600 m. 

 
Equations and initial data 

The applied formulas for calculating the vertical turbulent diffusion coefficient 
03GK  are taken from [28]: 
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where 65 10K = ⋅  m2/s; 2
LADCPSh  is the mean value of the measured shear square; 

( 222
zz VUSh += ), ( )zz VU ,  are the depth (z) derivatives of the east and north 

components of the current velocity; 89GK  is the coefficient value for the G89 
parameterization; 30f  is the inertial frequency at 30°N; 3

0 1024.5 −⋅=N  rad/s; f  is 
the local inertial frequency at 44°N; angle brackets denote averaging over 
the station ensemble. 2

76*GMSh  was calculated for GM76 taking into account the depth 
resolution of  LADCP measurements:  
 

( ) ( ) ( ) ( ) kkHkHkHkFSh LADCPDPLADCPDifADCPMGMShGM ⋅⋅⋅⋅= ∫ ___

100

0
76_

2
*76 , 

 

where ( )kF GMSh 76_  is the spectrum of current velocity shears GM76 [30] in 

the space of vertical wavenumbers ( k ); ( ) ( ) ( )( )4_ 4π4πsin kkkH ADCPM =  is 
the transfer function of spatial averaging inherent to ADCP; 

( ) ( ) ( )( )2_ 4π4πsin kkkH LADCPDif =  is the transfer function of differentiation at a depth 

increment of 4 m; ( ) ( ) ( )( )4_ 4π4πsin kkkH LADCPDP =  is the transfer function 
of the window-type filter used in data processing. The shear-to-strain ratio 

22

2

ω ζ zN
ShR
⋅

=  [19] ( zζ  is strain, the vertical derivative of the isopycnal displacement 

from the equilibrium position) is interpreted as the ratio of kinetic and potential 
energy of internal waves and for GM76 it equals 3 [30]. The calculation of ωR  was 
carried out taking into account the difference in transfer functions when processing 
density and current velocity data from the following relation: 
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where ( ) 222222
_ζ NNNCTDz −=  is the measured value of the square of strain 
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the strain spectrum GM76 [30], ( ) ( ) ( )( )2_ 4π4πsin kkkH CTDDif =  is the transfer 
function of differentiation at a depth increment of 4 m, 

( ) ( ) ( )( )4_ ππsin kkkH CTDDP =  is the transfer function of CTD data processing. 
After appropriate integration, we obtain the relation that was applied in 

the calculations, 
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introduced for the convenience of graphical representation. 
 

 
 
F i g.  3. Profiles of 2N , 2

CTDStr  and 2
LADCPSh  (dashed lines) averaged over the isopycnal surfaces and 

their approximations by power functions (solid lines) for the deep-sea part (left) and the continental 
slope (right) 

 
In the layer under consideration, the dependencies ( ) ( ) ( )zStrzShzN CTDLADCP

222 ,,  
are well represented by power functions (Fig. 3). This result is unexpected and may 
reflect a pattern characteristic of this layer. Notably, the most significant difference 
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between the center of the sea and the continental slope is observed in the dependence 
for ( )zStrCTD

2 . 
Preliminary data processing involved averaging the parameters over isopycnal 

surfaces and approximating them with power functions to suppress the random 
component of measurement noise and errors in estimating the mean values of 
random processes from a relatively small sample. Subsequently, when estimating 
K, power-law dependencies were used; for this purpose, 2N , N , 2

LADCPSh , 
2

*76GMSh , 2
CTDStr , 2

*76GMStr  in the formulas were replaced by their approximating 
functions (Fig. 3). 

 
 

Results and discussion 
This study examines the behavior of G03 parameterization factors within 

the specified layer (Fig. 4, left). The shear-to-strain ratio, which is critical for 
estimating 03GK  [31], increases with depth in both the deep part of the sea and 

the continental slope region. However, in the deep part, the values of ωR  are higher, 
potentially due to the influence of internal waves with frequencies close to inertial 
[32–34], where kinetic energy significantly exceeds potential energy [35]. As 
a result, the factor 1hj ⋅  in the deep part decreases by a factor of two, whereas in 
the continental slope region, it decreases by nearly a factor of five. This results in 

03GK values in the central part of the sea increasing with depth from 6101 −⋅  to 
6102 −⋅  m²/s, while in the continental slope region, it remains nearly constant, at 

~ 6102 −⋅  m²/s. The earlier G89 parameterization, which is proportional to 
the fourth power of the ratio of measured shear to its value for GM76, yields 
similar dependencies of 89GK  for the deep part of the sea and the continental slope. 

Compared to estimates derived from microstructural probe measurements 
[1, 8], the G03 and G89 parameterizations demonstrate strong comparability. In 
terms of the depth dependence of K, the G03 parameterization shows greater 
consistency. However, the comparability of K estimates obtained from 
microstructural probe data and standard CTD/LADCP measurements in the Black 
Sea remains unresolved due to the absence of synchronous measurement results. 

The determination of the vertical turbulent diffusion coefficient is partly 
driven by the need to estimate vertical fluxes of various substances in the marine 
environment to better understand the mechanisms of their stratification. In this 
study, based on the calculated KG values, an estimate of the salt flux was performed 
(Fig. 5, right), calculated using the relation ρSaltG G zF K S= ⋅ ⋅ , where zS  is 
the vertical derivative of salinity (Fig. 5, left). The salt flux 03SaltGF  at the upper 
boundary of the layer in the deep part of the sea is nearly twice as high as in 
the continental slope region. At the lower boundary, its values are approximately 
the same for both regions. 
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F i g.  4. Profiles of ωR  and j 1h  (left) and resulting profiles of the vertical turbulent diffusion 
coefficient for G03 and G89 parameterizations (right). Solid lines show deep part of the sea, dashed 
lines represent continental slope 

 

 
 
F i g.  5. Profiles of the vertical derivative of salinity (left) and salt fluxes (right) for the deep-sea part 
(solid lines) and the continental slope (dashed lines) 

 
The heat flux was calculated from the relation ρHeatG W G zF C K T= ⋅ ⋅ ⋅ , where 

4200=WC  J/(°C⋅kg) is the heat capacity of water, zT is the vertical derivative of 
temperature (Fig. 6, left). The G03 and G89 parameterizations yield relatively low 
heat flux values for both regions, with a maximum of ~ 16 mW/m² (Fig. 6, right). 
Essentially, this suggests that the heat flux from the sea depths has a negligible 
effect on the warming of the cold intermediate layer. 
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F i g.  6. Profiles of the vertical derivative of water temperature (left) and heat fluxes (right) for 
the deep-sea part (solid lines) and the continental slope (dashed lines) 

 
Conclusion 

This paper presents a method for applying the G03 parameterization to 
estimate the vertical turbulent diffusion coefficient in a layer ~ 200 m thick using 
standard CTD/LADCP measurement data. To suppress the random component of 
measurement noise, isopycnal averaging over the station ensemble and 
approximation of the resulting profiles by power-law functions were used. 
The differences in the transfer functions of CTD and LADCP data processing were 
considered when integrating the canonical internal wave spectrum GM76. 

The resulting profiles of the vertical turbulent diffusion coefficient 

03GK indicate a nearly constant value of ~ 62 10−⋅ m²/s in the continental slope 

region and a linear increase with depth from 61 10−⋅ to 62 10−⋅ m²/s in the deep 
part of the sea. Despite the relatively low values of the coefficient, they align well 
with estimates obtained from microstructural probe measurements. 

The calculated heat fluxes exhibit low values, with a maximum of 12 mW/m², 
confirming their negligible influence on the warming of the cold intermediate 
layer. The salt flux at the upper boundary of the layer in the continental slope 
region is 56 10−⋅ g/(m²⋅s), while in the deep part of the sea, it is ~ 53 10−⋅ g/(m²⋅s). 
At the lower boundary of the layer, the salt fluxes are nearly identical for both 
regions, ~ 6(4 5) 10−− ⋅ g/(m²⋅s). 

In the lower part of the Black Sea’s main pycnocline, a sharp increase in 
the shear-to-strain ratio with depth is observed, potentially resulting from 
the interaction of internal waves with small-scale inhomogeneities in density 
stratification. 
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