Interannual Variability of Thermal Characteristics of the Upper 1000-meter Layer in the Extratropical Zone of the Northwestern Part of the Pacific Ocean at the Turn of the XX–XXI Centuries

I. D. Rostov, E. V. Dmitrieva, N. I. Rudykh

V. I. Il’ichev Pacific Oceanological Institute, Far Eastern Branch of Russian Academy of Sciences, Vladivostok, Russian Federation

e-mail: rostov@poi.dvo.ru

Abstract

Purpose. The purpose of the study is to determine the trends and the spatio-temporal features of interannual changes in the sea surface temperature (SST) and in the upper 1000-meter layer in the extratropical zone of the northwestern Pacific Ocean, and to analyze their possible causal relationships with the large-scale and regional processes in the ocean and atmosphere over the certain phases of the modern period of global warming.

Methods and Results. To analyze the NOAA climatic data sets, the methods of cluster, correlation and regression analysis, and also the apparatus of empirical orthogonal functions were used. The results obtained made it possible to characterize the trends in interannual dynamics of thermal characteristics of the upper, intermediate and deep layers in certain areas under various conditions of the 20-year phases of the 40-year period of modern climate changes, and to quantify their features and statistical significance.

Conclusions. In general, in the above region during both phases of the modern period of climate changes, positive statistically significant trends were observed in the annual average SST, the values of which in 1982–2000 were 1.3–1.5 times higher than those in 2000–2021. During the second period, the area of positive SST trends decreased significantly and was localized in the northwestern part of the area under study. In contrast to the SST, at the same period, positive trends of the water column temperature in the upper 1000-m layer were traced over most of the area under study. The correlations between the variations in the ocean upper layer heat content and the processes in the ocean and atmosphere are most extensively manifested through the climatic indices NPGO, PDO, WP, PTW, and the anomalies in the geopotential field ΔH500.

Keywords

northwestern part of the Pacific Ocean, extratropical zone, modern climate changes, regional features, water temperature, warming trends, climate indices, correlations

Acknowledgements

The study was carried out within the framework of the Comprehensive Interdepartmental Program “Ecological Safety of Kamchatka: Study and Monitoring of Hazardous Natural Phenomena and Human Impacts” (NIOKTR 122012700198-9).

Original russian text

Original Russian Text © I. D. Rostov, E. V. Dmitrieva, N. I. Rudykh, 2023, published in MORSKOY GIDROFIZICHESKIY ZHURNAL, Vol. 39, Iss. 2, pp. 157-176 (2023)

For citation

Rostov, I.D., Dmitrieva, E.V. and Rudykh, N.I., 2023. Interannual Variability of Thermal Characteristics of the Upper 1000-meter Layer in the Extratropical Zone of the Northwestern Part of the Pacific Ocean at the Turn of the XX–XXI Centuries. Physical Oceanography, 30(2), pp. 141-159. doi:10.29039/1573-160X-2023-2-141-159

DOI

10.29039/1573-160X-2023-2-141-159

References

  1. Johnson, G.C. and Lyman, J.M., 2020. Warming Trends Increasingly Dominate Global Ocean. Nature Climate Change, 10, pp. 757-761. doi:10.1038/s41558-020-0822-0
  2. Na, H., Kim, K.-Y., Minobe, S. and Sasaki, Y.N., 2018. Interannual to Decadal Variability of the Upper-Ocean Heat Content in the Western North Pacific and Its Relationship to Oceanic and Atmospheric Variability. Journal of Climate, 31(13), pp. 5107-5125. doi:10.1175/JCLI-D- 17-0506.1
  3. Stephens, C., Levitus S., Antonov, J. and Boyer, T.P., 2001. On the Pacific Ocean Regime Shift. Geophysical Research Letters, 28(19), pp. 3721-3724. doi:10.1029/2000GL012813
  4. Rostov, I.D., Dmitrieva, E.V. and Rudykh, N.I., 2021. Climatic Changes of Thermal Conditions in the Pacific Subarctic at the Modern Stage of Global Warming. Physical Oceanography, 28(2), pp. 149-164. doi:10.22449/1573-160X-2021-2-149-164
  5. Meehl, G.A., Hu, A., Arblaster, J.M., Fasullo, J. and Trenberth, K.E., 2013. Externally Forced and Internally Generated Decadal Climate Variability Associated with the Interdecadal Pacific Oscillation. Journal of Climate, 26(18), pp. 7298-7310. doi:10.1175/jcli-d-12-00548.1
  6. Loeb, N.G., Thorsen, T.J., Norris, J.R., Wang, H. and Su, W., 2018. Changes in Earth’s Energy Budget during and after the “Pause” in Global Warming: An Observational Perspective. Climate, 6(3), 62. doi:10.3390/cli6030062
  7. Nieves, V., Willis, J.K. and Patzert, W.C., 2015. Recent Hiatus Caused by Decadal Shift in Indo-Pacific Heating. Science, 349(6247), pp. 532-535. doi:10.1126/science.aaa4521
  8. Foux, V.R. and Michurin, A.N., eds., 1997. [Origins of Oiyasio]. Saint Petersburg: St. Petersburg University Publishing, 248 p. (in Russian).
  9. Favorite, F., Dodimead, A.J. and Nasu, K., 1976. Oceanography of the Subarctic Pacific Region, 1960-71. Vancouver, Canada: International North Pacific Fisheries Commission, Bulletin No. 33. Japan, Tokyo: Kenkyusha Printing Company, 187 p. [online] Available at: http://www.npafc.org/new/inpfc/INPFC%20Bulletin/Bull%20No.33/Bulletin%2033.pdf
  10. Kuroda, H., Suyama, S., Miyamoto, H., Setou, T. and Nakanowatari, T., 2021. Interdecadal Variability of the Western Subarctic Gyre in the North Pacific Ocean. Deep Sea Research Part I: Oceanographic Research Papers, 169, 103461. doi:10.1016/j.dsr.2020.103461
  11. Yasuda, I., 2003. Hydrographic Structure and Variability in the Kuroshio-Oyashio Transition Area. Journal of Oceanography, 59, pp. 389-402. doi:10.1023/A:1025580313836
  12. Rostov, I.D., Dmitrieva, E.V. and Rudykh, N.I., 2022. Interannual Variability of Thermal Conditions in the Kuroshio Energetically Active Zone and Adjacent Areas of the Philippine Sea. Russian Meteorology and Hydrology, 47, pp. 290-303. doi:10.3103/S1068373922040057
  13. Di Lorenzo, E., Schneider, N., Cobb, K.M., Franks, P.J.S., Chhak, K., Miller, A.J., McWilliams, J.C., Bograd, S.J., Arango, H., Curchitser, E., Powell, T.M. and Rivière, P., 2008. North Pacific Gyre Oscillation Links Ocean Climate and Ecosystem Change. Geophysical Research Letters, 35(8), L08607. doi:10.1029/2007GL032838
  14. Panin, G.N., Vyruchalkina, T.Yu. and Solomonova, I.V., 2010. Regional Climatic Changes in Northern Hemisphere and Their Relationship to Circulation Indexes. Problems of Ecological Monitoring and Ecosystem Modelling, 23, pp. 92-108 (in Russian).
  15. Belkin, I., Krishfield, R. and Honjo, S., 2002. Decadal Variability of the North Pacific Polar Front: Subsurface Warming versus Surface Cooling. Geophysical Research Letters, 29(9), pp. 65-1-65-4. doi:10.1029/2001GL013806
  16. Qiu, B., 2002. Large-Scale Variability in the Midlatitude Subtropical and Subpolar North Pacific Ocean: Observations and Causes. Journal of Physical Oceanography, 32(1), pp. 353- 375. doi:10.1175/1520-0485(2002)032<0353:LSVITM>2.0.CO;2
  17. Byshev, V.I., Figurkin, A.L. and Anisimov, I.M., 2016. Recent Climate Changes of Thermohaline Structure in the North-West Pacific. Izvestiya TINRO, 185(2), pp. 215-227 (in Russian).
  18. Rostov, I.D. and Dmitrieva, E.V., 2021. Regional Features of Interannual Variations in Water Temperature in the Subarctic Pacific. Russian Meteorology and Hydrology, 46, pp. 106-114. doi:10.3103/S1068373921020059
  19. Piuchugin, M.K., Gurvich, I.A., Khazanova, E.S. and Salyuk, P.A., 2020. Some Features of Oceanological Conditions of the Microalgae Autumn-Flowering near the Southeast Shore of Kamchatka. Underwater Investigation and Robotics, 4(34), pp. 70-73. doi:10.37102/24094609.2020.34.4.010
  20. Boyer, T.P., Baranova, O.K., Coleman, C., Garcia, H.E., Grodsky, A., Locarnini, R.A., Mishonov, A.V., Paver, C.R., Reagan, J.R. [et al.], 2018. World Ocean Database 2018. In: A. V. Mishonov, technical ed., 2018. NOAA Atlas NESDIS 87. [online] Available at: https://www.ncei.noaa.gov/products/worldocean-database [Accessed: 9 June 2022].
  21. Penny, S.G., Behringer, D.W., Carton, J.A. and Kalnay, E., 2015. A Hybrid Global Ocean Data Assimilation System at NCEP. Monthly Weather Review, 143(11), pp. 4660-4677. doi:10.1175/MWR-D-14-00376.1
  22. Hu, Z., Hu, A., Hu, Y. and Rosenbloom, N., 2020. Budgets for Decadal Variability in Pacific Ocean Heat Content. Journal of Climate, 33(17), pp. 7663-7678. doi:10.1175/JCLI-D-19- 0360.1
  23. Na, H., Kim, K.-Y., Chang, K.-I., Park, J.J., Kim, K. and Minobe, S., 2012. Decadal Variability of the Upper Ocean Heat Content in the East/Japan Sea and Its Possible Relationship to Northwestern Pacific Variability. Journal of Geophysical Research, 117(C2), C02017. doi:10.1029/2011JC007369
  24. Kwon, Y.-O., Alenxader, M.A., Bond, N.A., Frankignoul, C., Nakamura, H., Qiu, B. and Thompson, L.A., 2010. Role of the Gulf Stream and Kuroshio–Oyashio Systems in Large-Scale Atmosphere–Ocean Interaction: A Review. Journal of Climate, 23(12), pp. 3249-3281. doi:10.1175/2010JCLI3343.1
  25. Ceballos, L.I., Di Lorenzo, E., Hoyos, C.D., Schneider, N. and Taguchi, B., 2009. North Pacific Gyre Oscillation Synchronizes Climate Fluctuations in the Eastern and Western Boundary Systems. Journal of Climate, 22(19), pp. 5163-5174. doi:10.1175/2009JCLI2848.1
  26. Hasegawa, T., Yasuda, T. and Hanawa, K., 2007. Multidecadal Variability of the Upper Ocean Heat Content Anomaly Field in the North Pacific and Its Relationship to the Aleutian Low and the Kuroshio Transport. Papers in Meteorology and Geophysics, 58, pp. 155-166. doi:10.2467/mripapers.58.155
  27. Wang, Y-L. and Wu, Ch.-R., 2019. Enhanced Warming and Intensification of the Kuroshio Extension, 1999–2013. Remote Sensing, 11(1), 101. doi:10.3390/rs11010101
  28. Nonaka, M., Nakamura, H., Tanimoto, Y., Kagimoto, T. and Sasaki, H. 2008. Interannual-to- Decadal Variability in the Oyashio and Its Influence on Temperature in the Subarctic Frontal Zone: An Eddy-Resolving OGCM Simulation. Journal of Climate, 21(23), pp. 6283-6303. doi:10.1175/2008JCLI2294.1
  29. Chand, S.S., Tory, K.J., Ye, H. and Walsh, K.J.E, 2017. Projected Increase in El Niño-Driven Tropical Cyclone Frequency in the Pacific. Nature Climate Change, 7, pp. 123-127. doi:10.1038/nclimate3181
  30. Kumar, A. and Wen, C., 2016. An Oceanic Heat Content-Based Definition for the Pacific Decadal Oscillation. Monthly Weather Review, 144(10) pp. 3977-3984. doi:10.1175/mwr-d-16- 0080.1
  31. Newman, M., Alexander, M.A., Ault, T.R., Cobb, K.M., Deser, C., Di Lorenzo, E., Mantua, N.J., Miller, A.J., Minobe, S. [et al.], 2016. The Pacific Decadal Oscillation, Revisited. Journal of Climate, 29(12), pp. 4399-4427. doi:10.1175/jcli-d-15-0508.1
  32. Geng, T., Yang, Y. and Wu, L., 2019. On the Mechanisms of Pacific Decadal Oscillation Modulation in a Warming Climate. Journal of Climate, 32(5), pp. 1443-1459. doi:10.1175/jcli- d-18-0337.1

Download the article (PDF)