Simulation of the Azov Sea Water Circulation Subject to the River Discharge

V.V. Fomin1, ✉, A.A. Polozok2, I.N. Fomina2

1 Marine Hydrophysical Institute, Russian Academy of Sciences, Sevastopol, Russian Federation

2 Sevastopol Branch of the Zubov State Oceanographic Institute, Sevastopol, Russian Federation

e-mail: v.fomin@ukr.net

Abstract

Features of river water distribution in the Sea of Azov are studied and the estimates of river flows’ velocities are obtained based on the σ-coordinate numerical baroclinic model. The model is realized in the grid with 1400 m horizontal resolution. In σ-coordinate 15 equally spaced levels were used. Time integration was performed with 2 min step. The computational domain consisted of the Azov Sea, the Kerch Strait and the Black Sea north-eastern shelf. It is shown that river flows represent an alongshore cyclonic-directed jet encircling the Sea of Azov and flowing to the Kerch Strait. Velocity of the currents in the jet was 0.03 – 0.05 m/s. The complexity of the coastline and bottom topography configuration leads to a jet meandering and formation of local vortex structures. Evolution of the Azov Sea currents and thermohaline structure is modeled for the period of the intense storm in November, 2007. Climatic temperature and salinity distributions are used as the initial fields. The following areas are found to be the most dynamically active: the frontal zone in the Taganrog Bay (due to the Don discharge); the salt water zone in the southern part of the Azov Sea (related to penetration of the Black Sea waters); two local zones of seawater freshening nearly the Kuban branches.

Keywords

the Azov Sea, σ-coordinate model, baroclinic circulation, river outlets, salinity fields, vortex structures

For citation

Fomin, V.V., Polozok, A.A. and Fomina, I.N., 2015. Simulation of the Azov Sea Water Circulation Subject to the River Discharge. Physical Oceanography, (1), pp. 15-26. doi:10.22449/1573-160X-2015-1-15-26

DOI

10.22449/1573-160X-2015-1-15-26

References

  1. Fomin, V.V., 2006, “Primenenie TVD-skhem dlya chislennogo modelirovaniya frontal'nykh zon solenosti v melkom more [The use of TVD-schemes for numerical modeling of the frontal zones of salinity in the shallow sea]”, Meteorologiya i gidrologiya, no. 2, pp. 59-68 (in Russsian).
  2. Il'in, Yu.P., Fomin, V.V., & D'yakov, N.N. [et al.], 2009 “Gidrometeorologicheskie usloviya morey Ukrainy. T. 1. Azovskoe more [Hydrometeorological conditions of the Ukraine seas]”, Sevastopol, ECOSI-Gidrofizika, vol. 1, p. 401 (in Russian).
  3. Ivanov, V.A., Fomin, V.V. 2010, “Matematicheskoe modelirovanie dinamicheskikh protsessov v zone more — susha [Mathematical Modelling of Dynamical Processes in the Sea-Land Area]”, Sevastopol, ECOSI-Gidrofizika, p. 363 (in Russian).
  4. Fomin, V.V., 2002, “Chislennaya model' tsirkulyatsii vod Azovskogo morya [A numerical water circulation model in the Sea of Azov]”, Nauch. tr. Ukr. nauchno-issled. Gidrometeorol. in-ta, no. 249, pp. 246-255 (in Russian).
  5. Harten, A., 1984, “On a class of high resolution total-variation-stable finite-difference schemes”, Society for Industrial and Applied Mathematics, vol. 21, no. 1, pp. 1-23.
  6. Blumberg, A.F., Mellor, G.L., 1987, “A description of three-dimensional coastal ocean circulation model”, Three-Dimensional Coast Ocean Models, vol. 4, pp. 1-16.
  7. Mikhailova, E.N., Shapiro, N.B., 1996, “Modelirovanie rasprostraneniya i transformatsii rechnykh vod na severo-zapadnom shel'fe i v glubokovodnoy chasti Chernogo morya [Modeling of distribution and transformation of river waters on the northwestern shelf and in deep-sea part of the Black Sea]”, Morskoy gidrofizicheskiy zhurnal, no. 3, pp. 30-40 (in Russian).
  8. Fong, D.A., Geyer, W.R. 2002, “The alongshore transport of freshwater in a surface-trapped river plume”, J. Phys. Oceanogr., vol. 32, no. 3, pp. 957-972.
  9. Jankowski, A. 2002, “Application of the σ-coordinate baroclinic model to the Baltic Sea”, Oceanologia, no. 44 (1), pp. 59-80.

Download the article (PDF)