Seasonal and Regional Variations of Water Temperature Synoptic Anomalies in the Northeastern Coastal Zone of the Black Sea

A.A. Novikov1, ✉, V.S. Tuzhilkin2

1 Branch of the Lomonosov Moscow State University in Sevastopol, Russian Federation

2 Lomonosov Moscow State University, Moscow, Russian Federation

e-mail: a_novik@bk.ru

Abstract

Climatic annual cycle of root-mean-square (RMS) values of synoptic water temperature anomalies (SWTA) with daily discreteness is analyzed based on observations within 1977-2005 period at hydro-meteostations (HMS) in the northeastern part of the Black Sea.

It is shown that SWTA values are statistically associated with their negative mean values testifying the fact that upwelling is a predominant mechanism in generating synoptic water temperature anomalies. In summer of synoptic variability of water temperature increases significantly from the north to south and in winter – from the south to north.

Five modes of the intra-annual variability according to the linear tends of SWTA values are revealed. Their phases and parameters are close the steep HMSs (Sochi, Tuapse and Gelendzhik), but are considerably different from the values in the autumn-winter period in Anapa HMS. The first (I), winter mixing mode is the longest one (late November – March) and is characterized by the lowest RMS values of SWTA. Spring growth mode (II) id characterized by a pronounced positive linear trend with a simultaneous decrease in the absolute values of the dispersion relative to the trend. In summer, there are two types of modes, which are characterized by high absolute levels of the same value, but different from each other. One of them (III) can be called "upwelling" mode and another (IV) – mode of "thermal stabilization". Mode (V) starts with the autumn cooling of the sea water. During this mode there is a marked decrease of SWTA values and an increase of their dispersion.

It is noted that in the shallow water area (Anapa HMS) the phase shift and mode duration is observed due to the lower thermal inertia of the water column, as well as the unique mode associated with a sharp decrease in wind activity in mid-February is marked.

Keywords

upwelling, current, wind, the Black Sea, synoptic variability, sea surface temperature

For citation

Novikov, A.A. and Tuzhilkin, V.S., 2015. Seasonal and Regional Variations of Water Temperature Synoptic Anomalies in the Northeastern Coastal Zone of the Black Sea. Physical Oceanography, (1), pp. 39-48. doi:10.22449/1573-160X-2015-1-39-48

DOI

10.22449/1573-160X-2015-1-39-48

References

  1. Blatov, A.S., Tuzhillin, V.S., 1990, “Srednemasshtabnye vikhri i sinopticheskaya izmenchivost' v Mirovom okeane [Mediumscale eddies and synoptic variability in the World Ocean]”, Itogi nauki i tekhniki. Ser. Okeanologiya, Moscow, VINITI AN SSSR, vol. 8, 248 p. (in Russian).
  2. Arkhipkin, V.S., Eremeev, V.N. & Ivanov, V.A., 1987, “Apvelling v granichnykh oblastyakh okeana [Upwelling in the boundary areas of the ocean]”, Sevastopol, MHI AS USSR, 46 p. (in Russian).
  3. Ivanov, V.A., Yankovskii, A.E., 1992, “Dlinnovolnovye dvizheniya v Chernom more [Long-wave motions in the Black Sea]”, Kiev, Naukova Dumka, 112p. (in Russian).
  4. Allen, J.S., 1980, “Models of wind-driven currents on the continental shelf”, Ann. Rev. Fluid Mech., no. 12, pp. 389-433.
  5. Brink, K.H., 1983, “The near-surface dynamics of coastal upwelling”, Progr. Oceanogr., vol. 12, no. 3, pp. 223-257.
  6. Brink, K.H., 1991, “Coastal trapped waves and wind-driven currents over the continental shelf”, Ann. Rev. Fluid Mech., no. 23, pp. 389-412.
  7. Brink, K.H., 1982, “A comparison of long coastal trapped wave theory with observations off Peru”, J. Phys. Oceanogr., vol. 12, no. 8, pp. 897-913.
  8. Clarke, A.J., Thompson, R.O.R.Y., 1984, “Large-scale wind-driven ocean response in the Australian Coastal Experiment region”, J. Phys. Oceanogr., vol. 14, no. 2, pp. 338-352.
  9. Bane, J.M., Spitz, Y.H. & Letelier, R.M. [et al.], 2007, “Jet stream intraseasonal oscillations drive dominant ecosystem variations in Oregon’s summertime coastal upwelling system”, Proc. Nat. Acad. Sci. USA, vol. 104, no. 33, pp. 13262-13267.
  10. Dale, A.C., Barth, J.A. & Levine, M.D. [et al.], 2008, “Observations of mixed layer restratification by onshore surface transport following wind reversal in coastal upwelling region”, J. Geophys. Res., no.113, pp. C01010, doi: 10.1029/2007JC004128.
  11. Pringle, J.M., Dever, E.P., 2009, “Dynamics of wind-driven upwelling and relaxation between Monterey Bay and Point Arena: Local-, regional-, and gyre-scale controls”, J. Geophys. Res., vol. 114, pp. C07003, doi:10.1029/2008JC005016.
  12. Bograd, S., Schroeder, I. & Sarkar, N. [et al.], 2009, “Phenology of coastal upwelling in the California Current”, Geophys. Res. Lett., vol. 36, pp. L01602, doi: 10.1029/2008GL035933.
  13. Letelier, J., Pizarro, O. & Nuñez, S., 2009, “Seasonal variability of coastal upwelling and upwelling front off central Chile”, J. Geophys. Res., no. 114, C12009, doi:10.1029/2008JC005171.
  14. Bogdanova, A.K., 1959, “Sgonno-nagonnaya tsirkulyatsiya i termicheskiy rezhim Chernogo morya [Wind effected circulation and thermal mode of the Black Sea]”, Tr. Sevastopol'skoy biologicheskoy stantsii, vol. 11, pp. 262-283 (in Russian).
  15. Bogdanova, A.K., Kropachev, L.N., 1959, “Sgonno-nagonnaya tsirkulyatsiya i ee rol' v gidrologicheskom rezhime Chernogo morya [Wind effected circulation and its role in hydrological mode of the Black Sea]”, Meteorologiya i gidrologiya, no. 4, pp. 26-33 (in Russian).
  16. Tolmazin, D.M., 1963, “Sgonnye yavleniya v severo-zapadnoy chasti Chernogo morya [Wind affected phenomena in northwestern part of the Black Sea]”, Okeanologiya, vol. 3, iss. 1, pp. 848-852 (in Russian).
  17. Vlasenko, V.I., Stachshuk, N.M. & Ivanov, V.A. [et al.], 2002, “Issledovanie vliyaniya pribrezhnogo apvellinga na dinamiku poley kisloroda i serovodoroda v shel'fovoy zone Chernogo morya [Research of the coastal upwelling effect on the dynamics of the oxygen and hydrogen sulfide fields in the Black Sea shelf area]”, Okeanologiya, vol. 42, no. 3, pp. 348-355 (in Russian).
  18. Ivanov, V.A., Repetin, L.N. & Malchenko, Yu.A. 2005, “Klimaticheskie izmeneniya gidrometeorologicheskikh i gidrokhimicheskikh usloviy pribrezhnoy zony Yalty [Climate changes of hydrometeorological and hydrochemical conditions in the coastal zone of Yalta]”, Sevastopol, MGI NAN Ukrainy, 163 p.
  19. Gawarkiewicz, G., Korotaev, G.K. & Stanichny, S.V. [et al.], 1999, “Synoptic upwelling and cross-shelf transport processes along Crimean coast of the Black Sea”, Contin. Shelf Res., no. 19, pp. 977-1005.
  20. Ivanov, V.A., Mikhailova, E.N., 2008, “Apvelling v Chernom more [Upwelling in the Black Sea]”, Sevastopol, ECOSI-Gidrofizika”, 92 p. (in Russian).
  21. Titov, V.B., 1990, “O sinopticheskoy i mezomasshtabnoy izmenchivosti termokhalinnykh kharakteristik v severo-vostochnoy chasti Chernogo morya [On synoptic and mesoscale variability of the thermohaline characteristics in the northeastern part of the Black Sea]”, Morskoy gidrofizicheskiy zhurnal, no. 2, pp.45-53 (in Russian).
  22. Titov, V.B., Savin, M.T., 1997, “Izmenchivost' pridonnykh techeniy na severo-vostochnom shel'fe Chernogo morya [The variability of bottom currents in the north-eastern shelf of the Black Sea]”, Okeanologiya, vol. 37, no. 1, pp. 50-55 (in Russian).
  23. Tuzhilkin, V.S., “Osobennosti protsessov v deyatel'nom sloe okeana v sinopticheskikh masshtabakh vremeni [Peculiarities of the processes in the ocean active layer within time synoptic scales]”, Kompleksnye issledovaniya prirody okeana, iss.8, pp. 58-73 (in Russian).
  24. Tuzhilkin, V.S., 2008, “Sezonnaya i mnogoletnyaya izmenchivost' termokhalinnoy struktury vod Chernogo i Kaspiyskogo morey [Seasonal and long-term variability of the thermohaline structure of the Black and Caspian Sea waters]”, Synopsis of a thesis, Moscow, Izd-vo MGU, 45 p.
  25. Titov, V.B., 2002, “Sezonnaya i mnogoletnyaya izmenchivost' klimaticheskikh usloviy nad akvatoriey Chernogo morya [Seasonal and long-term variability of the climatic conditions over the Black Sea water area]”, Kompleksnye issledovaniya severo-vostochnoy chasti Chernogo morya, Moscow, Nauka, pp. 9-27 (in Russian).
  26. Blatov, A.S., Ivanov, V.A., 1992, “Gidrologiya i gidrodinamika shel'fovoy zony Chernogo morya (na primere Yuzhnogo berega Kryma) [Hydrology and hydrodynamics of the Black Sea shelf area (on the example of the South Coast of Crimea)]”, Kiev, Naukova dumka, 242 p. (in Russian).
  27. Tuzhilkin, V.S., Arkhipkin, V.S. & Myslenkov, S.A. [et al.], 2010, “Sinopticheskaya termokhalinnaya izmenchivost' v Rossiyskoy pribrezhnoy zone Chernogo morya [Synoptic thermohaline variability in the Russian coastal zone of the Black Sea]”, Tr. Yuzhnogo nauchnogo tsentra RAN, vol. 5, pp. 62-71 (in Russian).

Download the article (PDF)