Experimental Study of High Wind Sea Surface Drag Coefficient

I.A. Repina, A.Yu. Artamonov, M.I. Varentsov, A.V. Kozyrev

A.M. Obukhov Institute of Atmospheric Physics RAS, Moscow, Russian Federation

Abstract

Insufficient knowledge of the atmosphere layer structure and momentum, heat and moisture exchange between the rough water surface and atmosphere under various background conditions is currently the main obstacle to the proper functioning of the global and regional weather prediction models and models of climate change. The sea surface drag coefficient is one of the main characteristics of the air-sea interaction, included in the wind waves and sea wind prediction models. In this paper the sea surface drag coefficient under differ condition in the coastal zone and deep sea was estimated from experimental measurements. The shipboard experimental data confirmed that the drag coefficient levels off as wind speed increases under high wind conditions (wind speed greater 25 m/s) while decreases as wind speed further increases. The characters of air-sea interaction in the coastal zone were investigated. It was documented grater drag coefficient under off-shore wind directions off-shore documented greater wind stress that could explain of the gusty of coastal winds, shoaling waves and development of internal boundary layers with off-shore flow. Also observed Drag coefficient at on-shore wind are greater than deep water values. It is explained that the wind wave state may be related to bottom topography, coastal line and fetch limited condition. Since the deep water surface drag coefficient is likely to underestimate wind stress and thus storm surge near the coast.

Keywords

air-sea interaction, strong winds, drag coefficient, off-shore wind

For citation

Repina, I.A., Artamonov, A.Yu., Varentsov, M.I. and Kozyrev, A.V., 2015. Experimental Study of High Wind Sea Surface Drag Coefficient. Physical Oceanography, (1), pp. 49-58. doi:10.22449/1573-160X-2015-1-49-58

DOI

10.22449/1573-160X-2015-1-49-58

References

  1. Garratt, J.R., 1977, “Review of Drag Coefficients over Oceans and Continents”, Mon. Weather Rev, vol. 105, pp. 915-929.
  2. Large, W.G, Pond, S., 1981, “Open ocean momentum flux measurements in moderate to strong winds”, J. Phys. Oceanogr., no. 11, pp. 324-336.
  3. Taylor, P.K., Yelland, M.J., 2001, “The dependence of sea surface roughness on the height and steepness of the waves”, J. Phys. Oceanogr., vol. 31, no.2, pp. 572-590.
  4. Repina, I.A., 2000, “Issledovanie dinamicheskikh kharakteristik i temperaturnogo rezhima vodnoy poverkhnosti v Kaspiyskom more [The research of dynamical characteristics and temperature state of the sea surface in the Caspian Sea]”, Meteorologiya i gidrologiya, no. 10, pp. 15-27. (in Russian)
  5. Repina, I.A., Artamonov, A.Yu. & Chukharev, A.M., [et al.], 2012, “Air-Sea interaction under low and moderate winds in the Black Sea coastal zone”, Estonian Journal of Engineering, no. 2, pp. 3-18.
  6. Emanuel, K.A., 1955, “Sensitivity of tropical cyclones to surface exchange coefficients and a revised steady-state model incorporating eye dynamics”, J. Atmos. Sci., vol. 52, pp. 3969-3976.
  7. Black, P.G., D’Asaro, E.A. & Drennan, E.A. [et al.], 2007, “Air–Sea Exchange in Hurricanes. Synthesis of Observations from the Coupled Boundary Layer Air–Sea Transfer Experiment”, Bulletin of American Meteorological Society, no. 3, pp. 357-374.
  8. Powell, M.D., Vickery, P.J. & Reinhold, T.A., 2003, “Reduced drag coefficient for high wind speeds in tropical cyclones”, Nature, vol. 422, pp. 279-283.
  9. Donelan, M.A., Haus, B.K. & Reul, N. [et al.], 2004, “On the limiting aerodynamic roughness of the ocean in very strong winds”, Geophys. Res. Lett., vol. 31, L18306.
  10. Andreas, E.L., 2004, “Spray stress revised”, J. Phys. Oceanogr, vol. 34, pp. 1429-1440.
  11. Makin, V.K., 2005, “A note on drag of the sea surface at hurricane winds”, Boundary Layer Meteorol., vol. 115, no.1, pp.169-176.
  12. Kudryavtsev, V.N., 2006, “On the effect of sea drops on the atmospheric boundary layer”, J. Geophys. Res., vol. 111, C07020.
  13. Butner, E.K., 1978, “Dinamika pripoverkhnostnogo sloya vozdukha [Dynamic of surface air layer]”, Leningrad, Hydrometeoizdat, 156 p. (in Russian)
  14. Moon, I.-J., Ginis, I. & Hara, T., 2004, “Effect of surface waves on air–sea momentum exchange. Part II: Behavior of drag coefficient under tropical cyclones”, J. Atmos. Sci., vol. 61., pp. 2334-2348.
  15. Semenov, O.E., 2000, “Ob uskorenii potoka vo vremya sil'nykh peschanykh i pylevykh bur' [Increasing of flux velocity during strong dust and sand storm]”, Gidrometeorologiya i ekologiya, no. 3-4, pp. 15-27. (in Russian)
  16. Barenblat, G.I., Golitsyn, G.S., 1974, “Local structure of mature dust storms”, J. Atmos. Sci., vol. 3, no. 7, pp. 1917-1933.
  17. Lykossov, V.N., 2001, “Numerical modeling of interaction between the atmospheric boundary layer and the Antarctic ice shelf”, Russ. J. Numer. Anal. Math. Modelling., vol. 16, pp. 315-330.
  18. Trotskaya, Yu.I., Rybushkina, G.V., 2008, “Quasi-linear model of interaction of surface waves with strong and hurricane winds”, Izvestiya, Atmospheric and oceanic physics, vol. 44, no. 5, pp. 621-645.
  19. Miyamoto, Y., Ishikawa, H., Takemi, T., 2007, “Modeling the air-sea-wave interaction under typhoon conditions: model development and a preliminary result for typhoon ioke”, Proceeding at the 8-th WRF users workshop, Boulder, NOAA, pp. 1-13.
  20. Polyakov, I.V. [et al.], 2007, “Observational program tracks Arctic Ocean transition to a warmer state”, Eos, Transactions, American Geophysical Union, vol. 88, pp. 398-399.
  21. Foken, T., 2008, “Micrometeorology”, Springer, 308 p.
  22. Burba, G., 2013, “Eddy Covariance Method for Scientific, Industrial, Agricultural, and Regulatory Applications: A Field Book on Measuring Ecosystem Gas Exchange and Areal Emission Rates”, Lincoln, LI-COR Biosciences, 331 p.
  23. Moat, B.I., Yelland, M.J. & Pascal, R.W., 2006, “Quantifying the airflow distortion over merchant ships. Part 1: Validation of a CFD model”, J. Atmos. Oceanic Technol., vol. 23, pp. 341-350.
  24. Edson, J.B., Hinton, A.A. & Prada, K.E. [et al.], 1998, “Direct Covariance Flux Estimates from Mobile Platforms at sea”, J. Atmos. Oceanic Technol., vol. 15, pp. 547-562.
  25. Fairal, C.W., Larsen, S.E., 1986, “Inertial-dissipation method and turbulent fluxes at the air-ocean interface”, Boundary-Layer Meteorol., vol. 34, pp. 287-301.
  26. Kitaigorodskyi, S.A., Volkov, Yu.A., 1965, “O parametre sherokhovatosti morskoy poverkhnosti i raschete turbulentnykh potokov kolichestva dvizheniya v privodnom sloe atmosfery [Roughness parameter of sea surface and calculation of turbulent momentum fluxes in surface atmospheric layer]”, Izv. AN SSSR. Fizika atmosfery i okeana, vol. 1, no. 9, pp. 15-23 (in Russian).
  27. Drennan, W.M., Graber, H.C. & Hauser, D., [et al.], 2002, “On the wave age dependence of wind stress over pure wind seas”, J. Geophys. Res., vol. 108, C3, 8062, doi:10.1029/2000JC000715.
  28. Volkov, Yu.A., 1969, “Spektry pul'satsiy skorosti i temperatury vozdushnogo potoka nad vzvolnovannoy poverkhnost'yu morya [Spectrum of air flux velocity and temperature under wave sea surface]”, Izv. AN SSSR. Fizika atmosfery i okeana, vol. 5, pp. 7-12 (in Russian)
  29. Donnelan, M.A., Drennan, W.M. & Katsaros, K., 1977, “The air–sea momentum flux in conditions of wind sea and swell”, J. Phys. Oceanogr., vol. 27, pp. 2087-2099.
  30. Drennan, W.M., Kahma, K.K. & Donelan, M.A., 1999, “On momentum flux and velocity spectra over waves”, Boundary-Layer Meteorology, vol. 92, no. 3, pp.489-515.
  31. Bye, J.A.T., Jenkins, A.D., 2006, “Drag coefficient reduction at very high wind speeds”, J. Geophys. Res., vol. 111, C03024, doi:10.1029/2005JC003114.
  32. Gao, Z., Wang, Q. & Zhou, M., 2009, “Wave-dependence of friction velocity, roughness length, and drag coefficient over coastal and open water surfaces by using three databases”, Advances in Atmospheric Sciences, vol. 26, no. 5, pp. 887-894.
  33. Artamonov, A.Yu., Buchnev, I. A. & Repina, I.A. [et al.], 2005, “Turbulent Fluxes of Heat and Momentum and Statistical Characteristics of Turbulence in the Near-Surface Air in Near-Shore and Deep-Water Zones of the Black Sea”, Oceanology, vol. 45, suppl. 1, pp. S27-S38.
  34. Soloviev, Yu.P., Ivanov, V.A., 2007, “Predvaritel'nye rezul'taty izmereniy atmosfernoy turbulentnosti nad morem [Preliminary results of measurements of atmospheric turbulence over the sea]”, Morskoy gidrofizicheskiy zhurnal, vol. 17, no. 3, pp. 154-172 (in Russian).
  35. Soloviev, Yu.P., 2010, “Harakteristiki vnutrennego pogranichnogo sloya nad morem pri vetre s berega, imeyushchego gornyy rel'ef [Characteristics of internal boundary layer above sea under coastal wind from mountain]”, Ekologicheskaya bezopasnost' pribrezhnoy i shel'fovoy zon i kompleksnoe ispol'zovanie resursov shel'fa, vol. 21, pp. 87-74 (in Russian).
  36. Soloviev, Yu.P., Kudryavtsev, V.N., 2010, “Wind-Speed Undulations Over Swell: Field Experiment and Interpretation”, Boundary Layer Meteorology, vol. 136, no. 3, pp. 341-363.
  37. Ivanov, V.A., Soloviev, Yu.P., 2004, “Metodika i predvaritel'nye rezul'taty izmereniy atmosfernoy turbulentnosti v pribrezhnoy zone Chernogo morya [The Method and preliminary results of the atmospheric turbulence measurements in the Black sea coastal zone]”, Ekologicheskaya bezopasnost' pribrezhnoy i shel'fovoy zon i kompleksnoe ispol'zovanie resursov shel'fa, vol. 10, pp. 78-102 (in Russian).
  38. Anctil, F., Donelan, M.A., 1996, “Air-water momentum flux observations over shoaling waves”, J. Phys.Oceanogr., vol. 26, pp. 1344-1353.
  39. Vickery, P.J., Skerlj, P.F., 2000, “Elimination of exposure D along the hurricane coastline in ASCE 7”, J. Struct. Eng., vol. 26, pp. 545-549.
  40. Thornton, E.B., Guza, R.T., 1982, “Energy Saturation and Phase Speeds Measured on a Natural Beach”, J. Geophys. Res., vol. 87, pp. 9499-9508.
  41. Holman, R.A., Sallenger, A.H., 1985, “Setup and swash on a natural beach”, J. Geophys. Res., vol. 90, pp. 945-953.
  42. Dean, R.G., Dalrymple, R.A., 1991, “Water wave mechanics for engineers and scientists”, Singapore, World Scientific, 368 p.
  43. Holland, K.T., Raubenheimer, B. & Guza, R.T., 1995, “Run-up kinematics on a natural beach”, J. Geophys. Res., vol. 100, pp. 4985-4993.
  44. Banner, M.L., Melville, W.K., 1976, “On the separation of air flow over water waves”, J. Fluid Mech., vol. 77, pp. 825-842.
  45. Kawamura, H., Toba, Y., 1988, “Ordered motion in the turbulent boundary layer over wind waves”, J. Fluid Mech., vol. 197, pp.105-138.
  46. Munk, W.H., Traylor, M.A., 1947, “Refraction of ocean waves: a process linking underwater topography to beach erosion”, J. of Geology., vol. 55, pp. 1-26.
  47. Westerink, J.J., Feyen, J.C. & Atkinson, J.H. [et al.], 2008, “A basin to channel scale unstructured grid hurricane storm surge model applied to southern Louisiana”, Mon. Weather Rev., vol. 136, no. 3, pp. 833-864.

Download the article (PDF)