Modeling of the Black Sea Region Climate Changes in the XXI Century

V.V. Efimov1, E.M. Volodin2, ✉, A.E. Anisimov1

1 Marine Hydrophysical Institute, Russian Academy of Sciences, Sevastopol, Russian Federation

2 Institute of Numerical Mathematics, Russian Academy of Sciences, Moscow, Russian Federation

e-mail: volodin@inm.ras.ru

Abstract

Numerical experiments on producing regional projections of climate changes in the Black Sea region in the end of the XXI century are performed. The regional numerical climate model HadRM3P and input data of the atmosphere-ocean general circulation global model INMCM4 (Institute of Numerical Mathematics, Russian Academy of Sciences) are used. Application of the regional model permits to reproduce mesoscale climate processes and to obtain new numerical estimates of regional climate changes with high spatial resolution which supplement large-scale assessments with new values. Changes of temperature and precipitation seasonal values in the future 2071 – 2100 period are compared with those of the control period in 1971 – 2000. According to the INMCM4 model, temperature in the Black Sea region will increase by 2.5 – 3°C in winter and 4 – 4.5°C in summer. In summer it will be accompanied by precipitation decrease up to 40%. For the territory of Ukraine and the central European part of Russia, the regional model produces more pronounced temperature growth in summer: up to 25 – 30%. The regional model forecast of summer precipitation changes in Ukraine and in the Balkan Peninsula is 30% lower than the analogous forecast of the global model. The obtained projections of climate changes in the Black Sea region can be considered as quite unfavorable for the agricultural sector.

Keywords

the Black Sea region, temperature, precipitation, climate change, climate modeling

For citation

Efimov, V.V., Volodin, E.M. and Anisimov, E.M., 2015. Modeling of the Black Sea Region Climate Changes in the XXI Century. Physical Oceanography, (2), pp. 3-13. doi:10.22449/1573-160X-2015-2-3-13

DOI

10.22449/1573-160X-2015-2-3-13

References

  1. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Eds. S. Solomon, D. Qin, M. Manning [et al], Cambridge, United Kingdom and New York, NY, USA: Cambridge Univ. Press, 996 p.
  2. Climate Change 2013: The Physical Science Basis. Working Group I Contribution to the IPCC Fifth Assessment Report (AR5), Eds. T.F. Stocker, D. Qin, G.-K. Plattner [et al], Cambridge, United Kingdom and New York, NY, USA: Cambridge Univ. Press, 1535 p.
  3. Christensen, J.H., Christensen, D.B. 2006, “A summary of the PRUDENCE model projections of changes in European climate by the end of this century”, Clim. Change, vol. 81, no. 1, pp. 7-30.
  4. ENSEMBLES: Climate Change and its Impacts: Summary of research and results from the ENSEMBLES project, Eds. P. van der Linden, J.F.B. Mitchell, UK, Exeter: Met Office Hadley Centre, 160 p.
  5. Jacob D., Petersen J., Eggert B. 2014, EURO-CORDEX: new high-resolution climate change projections for European impact research, Reg. Env. Change, vol. 14, no. 2, pp. 563-578.
  6. Efimov, V.V., Ivanov V.A. & Anisimov, A.E. 2011, “Chislennoe modelirovanie izmeneniya klimata Ukrainy v XXI veke [Numerical evaluations of the precipitation changes in the Black Sea region of Ukraine in XXI century]”, Dop. NAN Ukraini, no. 3, pp. 100-107 (in Russian).
  7. Anisimov, A.E., Efimov, V.V. 2012, “Chislennye otsenki izmeneniya osadkov v Chernomorskom regione Ukrainy v XXI stoletii [Numerical evaluations of the precipitation changes in the Black Sea region of Ukraine in XXI century]”, Morskoy gidrofizicheskiy zhurnal, no. 6, pp. 45-58 (in Russian).
  8. Jones, R.G., Noguer, M. & Hassel, D.C. [et al.]. 2004, “Generating high resolution climate change scenarios using PRECIS”, UK, Exeter: Met Office Hadley Centre, 40 p.
  9. Rowell, D.P. 2005, “A scenario of European climate change for the late twenty-first century: seasonal means and interannual variability”, Clim. Dyn., vol. 25, no. 7-8, pp. 837-849.
  10. Önol, B., H.M. Semazzi, F. 2009, “Regionalization of climate change simulations over the Eastern Mediterranean”, J. Clim., vol. 22, no. 8, pp.1944-1961.
  11. Bozkurt, D., Turuncoglu, U. & Sen, O.L. [et al.]. 2012, “Downscaled simulations of the ECHAM5, CCSM3 and HadCM3 global models for the Eastern Mediterranean–Black Sea region: evaluation of the reference period”, Clim. Dyn., vol. 39, no. 1-2, pp. 207-225.
  12. Önol, B., Bozkurt, D. & Turuncoglu, U.U. [et al.]. 2014, “Evaluation of the twenty-first century RCM simulations driven by multiple GCMs over the Eastern Mediterranean–Black Sea region”, Ibid., 2014, vol. 42, no. 7-8, pp. 1949-1965.
  13. Volodin, E.M., Dianskii, N. A., Gusev, A.V. 2010, “Vosproizvedenie sovremennogo klimata s pomoshch'yu sovmestnoy modeli obshchey tsirkulyatsii atmosfery i okeana INMCM4 [Contemporary climate representation by means of atmosphere and ocean combined circulation model INMCM4]”, Izv. RAN. Fizika atmosfery i okeana, vol. 46, no. 4, pp. 379-400 (in Russian).
  14. Taylor, K.E., Stouffer, R.J. & Meehl, G.A. 2012, “An overview of CMIP5 and the experiment design”, Bull. Amer. Met. Soc., vol. 93, no. 4, pp.485-498.
  15. Volodin, E.M., Lykosov, V.N. 1998, “Parametrizatsiya protsessov teplo- i vlagoobmena v sisteme rastitel'nost'-pochva dlya modelirovaniya obshchey tsirkulyatsii atmosfery 1. Opisanie i raschety s ispol'zovaniem lokal'nykh dannykh nablyudeniy [Parameterization of the warmth and humidity change in the processes in the vegetation-soil system for atmosphere general circulation modeling. 1. Description and calculations applying local observation data]”, Izv. RAN. Fizika atmosfery i okeana, vol. 34, no. 4, pp. 453-465 (in Russian).
  16. Moss, R.H., Edmonds, J.A., Hibbard, K.A. [et al.]. 2010, “The next generation of scenarios for climate change research and assessment”, Nature, vol. 463, no. 7282, pp. 747-756.
  17. Gao, X., Giorgi, F. 2008, “Increased aridity in the Mediterranean region under greenhouse gas forcing estimated from high resolution simulations with a regional climate model”, Glob. Planet. Change, vol. 62, no. 3, pp. 195-209.
  18. Giorgi, F. 2006, “Climate change hot-spots”, Geophys. Res. Lett., vol. 33, no. 8, L08707, doi: 10.1029/2006GL025734.
  19. Sheffield, J., Wood, E.F. 2008, “Projected changes in drought occurrence under future global warming from multi-model, multi-scenario, IPCC AR4 simulations”, Clim. Dyn., vol. 31, no. 1, pp. 79-105.
  20. Heinrich, G., Gobiet, A. 2012, “The future of dry and wet spells in Europe: A comprehensive study based on the ENSEMBLES regional climate models”, Int. J. Climatol., vol. 32, no. 13, pp.1951-1970.
  21. Heinrich, G., Gobiet, A., Mendlik, T. 2014, “Extended regional climate model projections for Europe until the mid-twenty first century: combining ENSEMBLES and CMIP3”, Clim. Dyn., 2014, vol. 42, no. 1-2, pp. 521-535.
  22. Efimov, V.V., Gubanova, E.V. 2003, “Izmenenie klimata Ukrainy v XX veke”, Sevastopol, 42 p. (in Russian).
  23. Rowell, D.P., Jones, R.G. 2006, “Causes and uncertainty of future summer drying over Europe”, Clim. Dyn., vol. 27, no. 2-3, pp. 281-299.
  24. Kendon, E.J., Rowell, D.P., Jones, R.G. 2010, “Mechanisms and reliability of future projected changes in daily precipitation”, Ibid., vol. 35, no. 2-3, pp. 489-509.

Download the article (PDF)