Seasonal Variability of Wind Stress Curl and Vorticity of Surface Currents in the North Atlantic

A.B. Polonskii, I.G. Shokurova, P.A. Sukhonos

Marine Hydrophysical Institute, Russian Academy of Sciences, Sevastopol, Russian Federation

e-mail: apolonsky5@mail.ru

Abstract

Seasonal variability of spatial distribution and values of the wind stress curl and vorticity of the surface currents in the North Atlantic are analyzed based on the ORA-S3 reanalysis data for 1959–2011. It is revealed that placement of two constant cyclonic and anticyclonic spacious areas in the surface currents’ vorticity distribution corresponds, in general, to the positions of the main oceanic gyres – the North Atlantic Sub-polar cyclonic and Subtropical anticyclonic gyres. As for distribution of the wind stress curl, the areas with cyclonic and anticyclonic surface currents’ vorticity are of more complex heterogeneous structure as compared to the similar ones. Strengthening of the cyclonic wind stress curl and vorticity of the surface currents in the sub-polar zone takes place in January, weakening – in July. Strengthening of the anticyclonic wind stress curl and vorticity of the surface currents in the subtropical zone is observed in January and June–July and weakening in May and September–October. Correlation between the intra-annual changes of the wind stress curl and the surface currents’ vorticity values averaged over the area of the North Atlantic Subtropical Gyre is 0.86, whereas the same value resulted from averaging over the area of the North Atlantic Sub-polar Gyre – 0.98. The values of the wind stress and its curl obtained by S. Hellerman and M. Rosenstein in 1983 are confirmed (though in some later papers they were characterized as overestimated).

Keywords

wind stress curl, vorticity of surface currents, seasonal variability, the North Atlantic

For citation

Polonskii, A.B., Shokurova, I.G. and Sukhonos, P.A., 2015. Seasonal Variability of Wind Stress Curl and Vorticity of Surface Currents in the North Atlantic. Physical Oceanography, (2), pp. 39-50. doi:10.22449/1573-160X-2015-2-39-50

DOI

10.22449/1573-160X-2015-2-39-50

References

  1. Tomczak, M., Godfrey, J.S. 2003, “Regional oceanography: an introduction”, Delhi, Daya Books, 390 p.
  2. Stommel, H.M. 1958, “The Gulf Stream: a physical and dynamical description”, Berkeley and Los Angeles, California, Univ. California Press, 230 p.
  3. Hellerman, S., Rosenstein, M. 1983, “Normal monthly wind stress over the World ocean with error estimates”, J. Phys. Oceanogr., vol. 13, no. 7, pp. 1093-1104.
  4. Harrison, D.E. 1989, “On climatological monthly mean wind stress and wind stress curl fields over the World ocean”, J. Clim., vol. 2, no. 1, pp. 57-70.
  5. Trenberth, K.E., Olson, J.G. & Large, W.G. 1989, “A global ocean wind stress climatology based on ECMWF analyses”, Climate and Global Dynamics Division, National Center for Atmospheric Research, 93 p, doi: 10.5065/D6ST7MR9.
  6. Trenberth, K.E., Large, W.G. & Olson, J.G. 1990, “The mean annual cycle in global ocean wind stress”, J. Phys. Oceanogr., vol. 20, no. 11, pp. 1742-1760.
  7. Mayer, D.A., Weisberg, R.H. 1993, “A description of COADS surface meteorological fields and the implied Sverdrup transports for the Atlantic Ocean from 30-degrees-S to 60-degrees-N”, Ibid., vol. 23, no. 10, pp. 2201-2221.
  8. Jonsson, S. 1991, “Seasonal and interannual variability of wind stress curl over the Nordic Seas”, J. Geophys. Res., vol. 96, no. C2, pp. 2649-2659.
  9. Bakun, A., Nelson, C.S. 1991, “The seasonal cycle of wind-stress curl in subtropical eastern boundary current regions”, J. Phys. Oceanogr., vol. 21, no. 12, pp. 1815-1834.
  10. Henin, C., Hisard, P. 1987, “The North Equatorial Countercurrent observed during the Programme Francais Ocean Climat dans l'Atlantique Equatorial Experiment in the Atlantic Ocean, July 1982 to August 1984”, J. Geophys. Res.: Oceans (1978 – 2012), vol. 92, no. C4, pp. 3751-3758.
  11. Sverdrup, H.U. 1947, “Wind-driven currents in a baroclinic ocean; with application to the equatorial currents of the eastern Pacific”, Proc. Nat. Acad. Sci. USA, vol. 33, no. 11, pp. 318-326.
  12. Balmaseda, M.A., Vidard, A. & Anderson, D.L.T. 2008, “The ECMWF Ocean Analysis System: ORA-S3”, Mon. Wea. Rev., vol.136, no. 8, pp. 3018-3034, doi: 10.1175/2008MWR2433.1.
  13. Uppala, S.M., Kallberg, P.W. & Simmons, A.J. [et al.]. 2005, “The ERA-40 reanalysis”, Quart. J. Roy. Meteor. Soc., vol. 131B, no. 612, pp. 2961 – 3012, doi: 10.1256/qj.04.176.
  14. Polonskii, A.B., Shokurova, I.G. & Sukhonos P.A. 2013, “Izmenchivost' zavikhrennosti napryazheniya treniya vetra nad Severnoy Atlantikoy [Variability of the wind stress curl over the North Atlantic]”, Ekologicheskaya bezopasnost' pribrezhnoy i shel'fovoy zon i kompleksnoe ispol'zovanie resursov shel'fa, Sevastopol, ECOSI-Gidrofizika, vol. 27, pp. 200-205 (in Russian).
  15. Artamonov, Yu.V., Bulgakov, N.P. & Polonskii, A.B. 1993, “Krupnomasshtabnaya struktura i izmenchivost' okeanograficheskikh poley severnoy chasti Tropicheskoy Atlantiki [Large-scale structure and variability of oceanographic fields in the north part of the Tropical Atlantic]”, Gidrofizika Tropicheskoy Atlantiki, edited by V.N. Eremeev, Kiev, Naukova Dumka, pp. 7-34 (in Russian).
  16. Garzoli, S.L., Katz, E.J. 1983, “The forced annual reversal of the Atlantic North Equatorial Countercurrent”, J. Phys. Oceanogr., vol. 13, no. 11, pp. 2082-2090.
  17. Stramma, L., Isemer, H.J. 1988, “Seasonal variability of meridional temperature fluxes in the eastern North Atlantic Ocean”, J. Mar. Res., vol. 46, no. 2, pp. 281-299.
  18. Richardson, P.L., McKee, T.K. 1984, “Average seasonal variation of the Atlantic equatorial currents from historical ship drifts”, J. Phys. Oceanogr., vol. 14, no. 7, pp. 1226-1238.
  19. Sarkisyan, A.S., 2006, “Sorok let otkrytiyu roli sovmestnogo effekta baroklinnosti i rel'efa dna v modelirovanii klimaticheskikh kharakteristik okeana [40 years of discovery of the joint effect of baroclinity and bottom relief in simulation of the ocean climatic characteristics]”, Izv. RAN. Fizika atmosfery i okeana, vol. 42, no. 5, pp. 582-603 (in Russian).
  20. Stramma L., Siedler G. 1988, “Seasonal changes in the North Atlantic subtropical gyre”, J. Geophys. Res., vol. 93, no. C7, pp. 8111-8118.
  21. Iselin, C. 1940, “Preliminary report on long-period variations in the transport of the Gulf Stream System”, Pap. Phys. Oceanogr. meteorol., vol. 8, no. 1, 40 p.
  22. Jia, Y. 2000, “Formation of an Azores Current due to the Mediterranean overflow in a modeling study of the North Atlantic”, J. Phys. Oceanogr., vol. 30, no. 9, pp. 2342-2358.
  23. Ozgokmen, T.M., Chassignet, E.P. & Rooth, C.G.H. 2001, “On the connection between the Mediterranean outflow and the Azores Current”, Ibid., vol. 31, no. 2, pp. 461-480.
  24. Spall, M.A. 2000, “Buoyancy-forced circulations around islands and ridges”, J. Mar. Res., vol. 58, no. 6, pp. 957-982.
  25. Klein, B., Siedler, G. 1989, “On the origin of the Azores Current”, J. Geophys. Res.: Oceans (1978-2012), vol. 94, no. C5, pp. 6159-6168.
  26. Niiler, P.P., Maximenko, N.A. & McWilliams, J.C. 2003, “Dynamically balanced absolute sea level of the global ocean derived from near-surface velocity observations”, Geophys. Res. Lett., vol. 30, no. 22, doi: 10.1029/2003GL018628.
  27. Wang, C. 2007, “Variability of the Caribbean low-level jet and its relations to climate”, Clim. Dyn., vol. 29, no. 4, pp. 411-422.
  28. Fuglister, F.C. 1951, “Annual variations in current speeds in the Gulf Stream system”, J. Mar. Res., vol. 10, no. 1, pp. 119-127.
  29. Suchovei, V. Ph. 1977, “Izmenchivost' gidrologicheskikh usloviy Atlanticheskogo okeana [Variability of the Atlantic Ocean hydrological conditions]”, Kiev, Naukova Dumka, 1977, 215 p. (in Russian).
  30. Lee, T.N., Johns, W.E. & Zantopp, R.J. [et al.]. 1996, “Moored observations of western boundary current variability and thermohaline circulation at 26.5 in the subtropical North Atlantic”, J. Phys. Oceanogr., vol. 26, no. 6, pp. 962-983.

Download the article (PDF)