Regional projections of climate change for the Black Sea – Caspian Sea area in late XXI century

V.V. Efimov1, E.M. Volodin2, A.E. Anisimov1, V.S. Barabanov1

1 Marine Hydrophysical Institute, Russian Academy of Sciences, Sevastopol, Russian Federation

2 Institute of Numerical Mathematics, Russian Academy of Sciences, Moscow, Russian Federation

Abstract

The results of dynamical downscaling of general circulation model INMCM4 data are described. INMCM4 model provided data on the atmosphere with 2 × 1,5° spatial resolution and on the ocean with 1 × 0,5° resolution. Two regional climate models (RegCM4 and HadRM3P) were used to downscale input data for 1971 – 2000 and 2071 – 2100 periods. Enhanced spatial resolution 25 × 25 km was obtained by downscaling procedure. Main parameters of climate change are presented for the Black Sea and Caspian region at the end of XXI century assuming intense anthropogenic emission of greenhouse gases in accordance with _RCP_8.5 scenario. Climate change in the region, according to the models, is characterized by significant temperature increase in summer (~ 5 °C) and relatively moderate increase in winter (2 – 3 °C). The amount of precipitation is also considerably decreasing (more then by 40%) in the area that corresponds maximum warming (Carpathians and Anatolian peninsula) in spring and summer seasons. In both models total precipitation decrease occurs mainly due to decrease of convective precipitation frequency. Generally, the main reasons for predicted changes in the future climate are the thermodynamic phenomena connected with decreasing relative humidity as well as some circulation features caused by enhanced anti-cyclonic circulation in the region. Obtained numerical estimations of regional climate change are in a good agreement with data from previous studies.

Keywords

regional climate, simulation, the Black Sea region, Caspian Sea region

For citation

Efimov, V.V., Volodin, E.M., Anisimov, A.E. and Barabanov, V.S., 2015. Regional projections of climate change for the Black Sea – Caspian Sea area in late XXI century. Physical Oceanography, (5), pp. 49-66. doi:10.22449/1573-160X-2015-5-49-66

DOI

10.22449/1573-160X-2015-5-49-66

References

  1. Christensen, J.H., Christensen, D.B., 2006, “A summary of the PRUDENCE model projections of changes in European climate by the end of this century”, Clim. Change., vol. 81, pp. 7-30.
  2. 2009, “ENSEMBLES: climate change and its impacts: Summary of research and results from the ENSEMBLES project”, Eds: P. van der Linden, J.F.B. Mitchell, Exeter: Met Office Hadley Centre, 160 p.
  3. Halenka, T. Cecilia, 2010, “EC FP6 Project on the Assessment of Climate Change Impacts in Central and Eastern Europe” Global Environmental Change: Challenges to Science and Society in Southeastern Europe, Dordrecht, Springer, pp. 125-137.
  4. Jacob, D., Petersen, J. & Eggert, B., 2014, “EURO-CORDEX: new high-resolution climate change projections for European impact research”, Reg. Env. Change, vol. 14, pp. 563-578.
  5. Efimov, V.V., Ivanov V.A. & Anisimov, A.E., 2011, “Chislennoe modelirovanie izmeneniya klimata Ukrainy v XXI veke [Numerical modeling of the climate change in Ukraine in XXI century]”, Dokl. NAN Ukrainy, vol. 3, pp. 100-107 (in Russian).
  6. Anisimov, A.E., Efimov, V.V., 2012, “Chislennye otsenki izmeneniya osadkov v Cherno-morskom regione Ukrainy v XXI stoletii [Numerical evaluations of the precipitation changes in the Black Sea region of Ukraine in XXI century]”, Morskoy gidrofizicheskiy zhurnal, vol. 6, pp. 45-58 (in Russian).
  7. Jones, R.G., Noguer, M. & Hassel, D.C. [et al.], 2004, “Generating high resolution climate change scenarios using PRECIS”, Exeter, Met Office Hadley Centre, 40 p.
  8. Rowell, D.P., 2005, “A scenario of European climate change for the late twenty-first century: seasonal means and interannual variability”, Clim. Dyn., vol. 25, pp. 837-849.
  9. Önol, B., Semazzi, H.M.F., 2009, “Regionalization of climate change simulations over the Eastern Mediterranean”, J. Climate, vol. 22, pp. 1944-1961.
  10. Bozkurt, D., Turuncoglu, U. & Sen, O.L. [et al.], 2012, “Downscaled simulations of the ECHAM5, CCSM3 and HadCM3 global models for the eastern Mediterranean–Black Sea region: evaluation of the reference period”, Clim. Dyn., vol. 39, pp. 207-225.
  11. Önol, B., Bozkurt, D., Turuncoglu, U.U. [et al.], 2014, “Evaluation of the twenty-first century RCM simulations driven by multiple GCMs over the Eastern Mediterranean–Black Sea region”, Ibid., vol. 42, pp. 1949-1965.
  12. 2013, “IPCC, 2013: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (AR5)”, Eds: T.F. Stocker, D. Qin, G.-K. Plattner [et al.], Cambridge, Cambridge University Press, 1535 p.
  13. 2007, “IPCC, 2007: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (AR4)”, Eds: S. Solomon, D. Qin, M. Manning [et al.], Cambridge, Cambridge University Press, 996 p.
  14. Giorgi, F., Lionello, P., 2008, “Climate change projections for the Mediterranean region”, Glob. Planet. Change, vol. 63, pp. 90-104.
  15. Sheffield, J., Wood, E.F., 2008,”Projected changes in drought occurrence under future global warming from multi-model, multi-scenario, IPCC AR4 simulations”, Clim. Dyn.,vol. 31, pp. 79-105.
  16. Tapiador, F.J., 2010, “A joint estimate of the precipitation climate signal in Europe using eight regional models and five observational datasets”, J. Clim., vol. 23, pp.1719-1738.
  17. Déqué, M., Somot, S. & Sanchez-Gomez, E. [et al.], 2012, “The spread amongst ENSEMBLES regional scenarios: regional climate models, driving general circulation models and interannual variability”, Clim. Dyn., vol. 38, pp. 951-964.
  18. Kendon, E.J., Rowell, D.P. & Jones, R.G. [et al.], 2008, “Robustness of future changes in local precipitation extremes”, J. Clim., vol. 21, pp. 4280-4297.
  19. Heinrich, G., Gobiet, A., 2012, “The future of dry and wet spells in Europe: A comprehensive study based on the ENSEMBLES regional climate models”, Int. J. Climatol., vol. 32, pp. 1951-1970.
  20. Gao, X., Giorgi, F., 2008, “Increased aridity in the Mediterranean region under greenhouse gas forcing estimated from high resolution simulations with a regional climate model”, Glob. Planet. Change, vol. 62, pp. 195-209.
  21. Rowell, D.P., Jones, R.G., 2006, “Causes and uncertainty of future summer drying over Europe”, Clim. Dyn, vol. 27, pp. 281-299.
  22. Kendon, E.J., Rowell, D.P. & Jones, R.G., 2010, “Mechanisms and reliability of future projected changes in daily precipitation”, Ibid., vol. 35, pp. 489-509.
  23. Taylor, K.E., Stouffer, R.J. & Meehl, G.A., 2012, “An overview of CMIP5 and the experiment design”, Bull. Amer. Meteorol. Soc., vol. 93, pp. 485-498.
  24. Volodin, E.M., Dianskii, N.A. & Gusev, A.V., 2010, “Vosproizvedenie sovremennogo klimata s pomoshch'yu sovmestnoy modeli obshchey tsirkulyatsii atmosfery i okeana INMCM4 [Contemporary climate representation by means of atmosphere and INMCM4 ocean combined circulation model]”, Izv. RAN. Fizika atmosfery i okeana, vol. 46, no. 4, pp. 379-400 (in Russian).
  25. Volodin, E.M., Dianskii, N.A. & Gusev, A.V., 2013, “Vosproizvedenie i prognoz klimaticheskikh izmeneniy v XIX – XXI vekakh s pomoshch'yu modeli zemnoy klimaticheskoy sistemy IVM RAN [Contemporary climate change representation in XIX – XXI centuries by means of INM earth climatic system]”, Ibid., vol. 49, no. 4, pp. 347-366 (in Russian).
  26. Volodin, E.M., Lykosov, V.N., 1998, “Parametrizatsiya protsessov teplo- i vlagoobmena v sisteme rastitel'nost' – pochva dlya modelirovaniya obshchey tsirkulyatsii atmosfery. 1. Opisanie i raschety s ispol'zovaniem lokal'nykh dannykh nablyudeniy [Parameterization of the warmth and humidity change in the processes in the vegetation-soil system for atmosphere general circulation modeling. 1. Description and calculations applying local observation data]”, Ibid., vol. 34, no. 4, pp. 453-465 (in Russian).
  27. Giorgi, F., Anyah, R.O., 2012, “The road towards RegCM4”, Clim. Res., vol. 52, pp. 3-6.
  28. Mearns, L.O., Arritt, R. & Biner, S. [et al.], 2012, “The North American regional climate change assessment program: Overview of phase I results”, Bull. Amer. Meteorol. Soc., vol. 93, pp. 1337-1362.
  29. Giorgi, F., Marinucci, M.R. & Bates, G.T., 1993, “Development of a second-generation regional climate model (RegCM2). Part I: Boundary-layer and radiative transfer processes”, Mon. Wea. Rev., vol. 121, pp. 2794-2813.
  30. Giorgi, F., Marinucci, M.R. & Bates, G.T. [et al.], 1993, “Development of a second-generation regional climate model (RegCM2). Part II: Convective processes and assimilation of lateral boundary conditions”, Ibid., pp. 2814-2832.
  31. Grell, G.A., Dudhia, J. & Stauffer, D.R., 1994, “A Description of the Fifth-Generation Penn State/NCAR Mesoscale Model (MM5)”, NCAR Technical Note, NCAR/TN-398+STR, 121 p.
  32. Holtslag, A., de Bruijn, E. & Pan, H.L., 1990, “A high resolution air mass transformation model for short-range weather forecasting”, Mon. Wea. Rev., vol. 118, pp. 1561-1575.
  33. Giorgi, F., Coppola, E. & Solmon, F. [et al.], 2012, “RegCM4: model description and preliminary tests over multiple CORDEX domains”, Clim. Res., vol. 52, pp. 7-29.
  34. Grell, G.A., 1993, “Prognostic evaluation of assumptions used by cumulus parameterizations”, J. Atmos. Sci., vol. 121, pp. 764-787.
  35. Arakawa, A., Schubert, W.H., 1974, “Interaction of a cumulus cloud ensemble with the large-scale environment. Part I”, Ibid., vol. 31, pp. 674-701.
  36. Emanuel, K.A., 1991, “A scheme for representing cumulus convection in large-scale models”, Ibid., vol. 48, pp. 2313-2329.
  37. Pal, J.S., Small, E.E. & Eltahir, E.A.B., 2000, “Simulation of regional-scale water and energy budgets: Representation of subgrid cloud and precipitation processes within RegCM”, J. Geophys. Res. Atmos., vol. 105, pp. 29579-9594.
  38. Kiehl, J.T., Hack, J.J. & Bonan, G.B. [et al.], 1996, “Description of the NCAR Community Climate Model (CCM3)”, NCAR Technical Note, NCAR/TN-420+STR, 152 p.
  39. Giorgi, F., Mearns, L.O., 1999, “Introduction to special section: Regional climate modeling revisited”, J. Geophys. Res. Atmos., vol. 104, pp. 6335-6352.
  40. Dickinson, R.E., Kennedy, P.J. & Henderson-Sellers, A., 1993, “Biosphere-Atmosphere Transfer Scheme (BATS) Version 1e as Coupled to the NCAR Community Climate Model”, NCAR Technical Note, NCAR/TN-387+STR, 72 p.
  41. Simmons, A.J., Burridge, D.M., 1981, “An energy and angular-momentum conserving vertical finite-difference scheme and hybrid vertical coordinates”, Mon. Wea. Rev., vol. 109, pp. 758-766.
  42. Cox P.M., Betts R.A. & Bunton C.B. [et al.], 1999, “The impact of new land surface physics on the GCM simulation of climate and climate sensitivity”, Clim. Dyn., vol. 15, pp. 183-203.
  43. Moss, R.H., Edmonds, J.A. & Hibbard, K.A. [et al.], 2010, “The next generation of scenarios for climate change research and assessment”, Nature, vol. 463, pp. 747-756.
  44. Efimov, V.V., Belokopytov, V.N. & Anisimov, A.E., 2012, “Otsenka sostavlyayushchikh vodnogo balansa Chernogo morya [Evaluation of the Black Sea water balance components]”, Metrologiya i gidrologiya, no. 12, pp. 69-76 (in Russian).
  45. Efimov, V.V., Anisimov, A.E., 2011, “Klimaticheskie kharakteristiki izmenchivosti polya vetra v Chernomorskom regione – chislennyy reanaliz regional'noy atmosfernoy tsirkulyatsii [Climatic changeability features of the wind field in the Black Sea region – regional atmospheric circulation numerical re-analysis]”. Izv. RAN. Fizika atmosfery i okeana, vol. 47, no. 3, pp. 380-392 (in Russian).
  46. Anisimov, A.E., Yarovaya, D.A. & Barabanov, V.S., 2015, “Reanaliz atmosfernoy tsirkulyatsii dlya Chernomorsko-Kaspiyskogo regiona [Atmospheric circulation re-analysis for the Black Sea-Caspian region]”, Morskoy gidrofizicheskiy zhurnal, vol. 4, pp. 14-28 (in Russian).
  47. Qu, X., Hall, A., 2007, “What controls the strength of snow-albedo feedback?”, J. Clim., vol. 20, pp. 3971-3981.
  48. Giorgi, F., 2006, “Climate change hot-spots”, Geophys. Res. Lett, vol. 33, L08707.
  49. Sutton, R.T., Dong, B. & Gregory, J.M., 2007, “Land/sea warming ratio in response to climate change: IPCC AR4 model results and comparison with observations”, Ibid., vol. 34, L02701.
  50. Boer, G.J., 2011, “The ratio of land to ocean temperature change under global warming”, Clim. Dyn., vol. 37, pp. 2253-2270.
  51. Heinrich, G., Gobiet, A. & Mendlik, T., 2014, “Extended regional climate model projections for Europe until the mid-twenty first century: combining ENSEMBLES and CMIP3”, Ibid., vol. 42, pp. 521-535.

Download the article (PDF)