Block Approach to the Simulation of Circulation and Tides in the Black Sea

S.F. Dotsenko1, ✉, V.B. Zalesny2, N.K.V. Sannikova1

1 Marine Hydrophysical Institute, Russian Academy of Sciences, Sevastopol, Russian Federation

2 Institute of Numerical Mathematics, Russian Academy of Sciences, Moscow, Russia

e-mail: sf_dotsenko@mail.ru

Abstract

The article gives the analysis of tidal parameters in the Black Sea with the field data for a variety of marine coastal areas. The characteristics of the basic parameters of tidal oscillations in the region and the examples of cotidal maps and maps of the lines of equal amplitudes for the semi-diurnal tide are presented. Besides, the Black Sea water circulation is simulated using the block approach. The σ-model of the ocean circulation developed in the Institute of Numerical Mathematics of RAS is applied. The model spatial resolution over the longitude and latitude is about 4 km. 40 irregularly distributed σ-levels are preset over the vertical; the step in time is 300 s. The vortex structure is distinctly manifested in the Black Sea circulation. The Rim Current which characterizes general cyclonic circulation along the Black Sea perimeter forming two evident vortices is reproduced. In general, results of numerical modeling in seemed like a good match observational data, as well as the results of other models of the Black Sea. To describe generation of tides, the module corresponding to the Sun and Moon tide-generating potentials is introduced into the σ-model. The analysis showed that the tides in the Black Sea are weakly expressed because of the relative smallness of the pool area. As the Black Sea straits are shallow and relatively narrow, so that does not contribute to the development of tides.

Keywords

the Black Sea, general circulation, tides, mathematical model, block approach, computational experiments

For citation

Dotsenko, S.F., Zalesny, V.B. and Sannikova, N.K.V., 2016. Block Approach to the Simulation of Circulation and Tides in the Black Sea. Physical Oceanography, (1), pp. 3-19. doi:10.22449/1573-160X-2016-1-3-19

DOI

10.22449/1573-160X-2016-1-3-19

References

  1. Kagan, B.A., 1968, “Gidrodinamicheskie modeli prilivnykh dvizheniy v more [The hydrodynamic models of tidal movements in the sea]”, L., Gidrometeoizdat, 219 p. (in Russian).
  2. Marchuk, G.I., Kagan, B.A., 1991, Dinamika okeanskikh prilivov [Dynamics of the ocean tides], L., Gidrometeoizdat, 471 p. (in Russian).
  3. Androsov, A.A., Vol'tsinger, N.E., 2005, “Prolivy Mirovogo okeana. Obshchiy podkhod k modelirovaniyu [Straits of the World Ocean. The general approach to modeling]”, M., Nauka, 2005, 187 p. (in Russian).
  4. Goryachkin, Yu.N., Ivanov, V.A., 2006, “Uroven' Chernogo morya: proshloe, nastoyashchee i budushchee [The level of the Black Sea: past, present and future], Sevastopol, MGI NAN Ukrainy, 210 p. (in Russian).
  5. Dotsenko, S.F., Ivanov, V.A., 2010, “Prirodnye katastrofy Azovo-Chernomorskogo regiona [Natural disasters of the Azov-Black Sea region], Sevastopol, EСOSI-Gidrofizika, 174 p. (in Russian).
  6. Marinescu, A., Sclarin O., 1968, “O. Les variations periodignes du nivean de la Mer Noire a longstanga”, Trans. Museum histoire nature Gr. Antipa, no. 1, pp. 531-535.
  7. Endros, A., 1932, “Die Seiches des Schwarzen und Azowschen meers und die dortigen Hubhohen der Gezeiten”, Ann. Hyd. Mar.Met., Bd. 60, Ht. 11, s. 442-453.
  8. Ivanov, V.A., Manilyuk, Yu.V. & Cherkesov, L.V., 1996, “O seyshakh Chernogo morya [On the Black Sea seiches], Meteorologiya i gidrologiya, no. 11, pp. 57-63 (in Russian).
  9. Arkhipkin, V.S., Ivanov, V.A. & Nikolaenko, E.G., 1987, Modelirovanie sobstvennykh kolebaniy v yuzhnykh moryakh [Simulation of the natural oscillations in the southern seas], Chislennoe Modelirovanie Gidrofizicheskikh Protsessov i Yavleniy v Zamknutykh Vodoemakh, edited by A.S. Sarkisyan, M., Nauka, pp. 78-91 (in Russian).
  10. Goryachkin, Yu.N., Ivanov, V.A. & Repetin, L.N. [et al.], 2002, “Seyshi v Sevastopol'skoy bukhte [Seiches in the Sevastopol Bay]”, Tr. UkrNIGMI, iss. 250, pp. 342-353 (in Russian).
  11. Defant, A., 1961, “Physical Oceanography. V. 2”, Oxford, New York, Pergamon Press, 598 p.
  12. Yastreb, Ya.P., Khmara, T.V., 2005, “Sravnitel'naya kharakteristika prilivnykh volnovykh dvizheniy v moryakh sredizemnomorskogo tipa [Comparative characteristics of the tidal wave motions in the seas of the Mediterranean type]”, Ekologicheskaya Bezopasnost' Pribrezhnoy i Shel'fovoy Zon i Kompleksnoe Ispol'zovanie Resursov Shel'fa, Sevastopol, MGI NAN Ukrainy, iss.12, pp. 60-69 (in Russian).
  13. Yuce, H., 1993, “Analysis of the water level variations in the eastern Black Sea”, J. Coast. Res., vol. 9, no. 4, pp. 1075-1082.
  14. Boon, J., 2004, “Secrets of the tide: tide and tidal current analysis and applications, storm surges and sea level trends”, Woodhead Publishing, 224 p.
  15. Le Provost, C.F., Lyard, F. & Molines, J.M. [et al.], 1998, “A hydrodynamic ocean tide model improved by assimilating a satellite altimeter-derived data set”, J. Geophys. Res., vol. 103, no. C3, pp. 5513-5529.
  16. Moshonkin, S.N., Dianskiy, N.A. & Gusev, A.V., 2007, “Vliyanie vzaimodeystviya Atlantiki s Severnym Ledovitym okeanom na Gol'fstrim [Influence of the Atlantic and Arctic Ocean ineratction with the Gulf Stream]”, Okeanologiya, vol. 47, no. 2, pp. 197-210 (in Russian).
  17. Dianskiy, N.A., Zalesny, V.B. & Moshonkin, S.N. [et al.], 2006, “Modelirovanie mussonnoy tsirkulyatsii Indiyskogo okeana s vysokim prostranstvennym razresheniem [The Indian Ocean monsoon circulation simulation with high spatial resolution]”, Ibid., vol. 46, no. 4, pp. 421-442 (in Russian).
  18. Marchuk, G.I., Rusakov, A.S. & Zalesny, V.B. [et al.], 2005, “Splitting numerical technique with application to the high resolution simulation of the Indian Ocean circulation”, Pure Appl. Geophys., vol. 162, pp. 1407-1429.
  19. Parkinson, C.L., Washington, W.M., 1979, “A large scale numerical model of sea ice”, J. Geophys., Res., vol. 84, no. C1, pp. 311-337.
  20. Yakovlev, N.G., 2009, “Vosproizvedenie krupnomasshtabnogo sostoyaniya vod i morskogo l'da Severnogo Ledovitogo okeana v 1948-2002 gg. Chast' I. Chislennaya model' i srednee sostoyanie [Simulation of the large-scale condition of waters and sea ice of the Arctic Ocean in 1948-2002. Part I. A numerical model and the average]”, Izv. RAN. Fizika atmosfery i okeana, vol. 45, no. 3, pp. 383-398 (in Russian).
  21. Marchuk, G.I., 2009, “Metody vychislitel'noj matematiki [Computational mathematics methods]”, SPb, Lan', 608 p. (in Russian).
  22. Briegleb, B.P., Hunke, E.C. & Bitz, C.M. [et al.], 2004, “The sea ice simulation of the Community Climate System Model”, version two, NCAR Tech. Note NCAR/TN-45+STR, 34 p.
  23. Hunke, E.C., Dukowicz, J.K., 1997, “An elastic-viscous-plastic model for sea ice dynamics” J. Phys. Oceanogr., vol. 27, no. 9, pp. 1849-1867.
  24. Arabelos, D.N., Papazachariou, D.Z. & Contadakis, M.E. [et al.], 2011, “A new tide model for Mediterranean Sea based on altimetry and tide gauge assimilation”, Ocean Sci., vol. 7, no. 3, pp. 429-444.
  25. Tierney, C.C., Kantha, L.H. & Born, G.H., 2000, “Shallow and deep water global ocean tides from altimetry and numerical modeling”, J. Geophys. Res., vol. 105, no. C5, pp. 11259-11277.
  26. Feistel, R., Nausch, G. & Wasmund, N., 2008, “State and evolution of the Baltic Sea, 1952-2005: a detailed 50-year survey of meteorology and climate, physics, chemistry, biology, and marine environment”, Hoboken, John Wiley & Sons, 703 p.
  27. Mzadek, R., 2005, “Hydrodynamic tidal model of Cook Strait”, Ecole MATMECA, 30 p.
  28. Kowalik, Z., Untersteiner, N., 1978, “A study of the M2 tide in the Arctic Ocean”, Dt. Hydrogr. Z., vol. 31, s. 216-229.
  29. Tsimplis, M.N., Proctor, R. & Flather, R.A., 1995, “A two dimensional tidal model for Mediterranean Sea”, J. Geophys. Res., vol. 100, no. C8, pp. 16223-16239.
  30. Einšpigel, D., 2012, “Barotropní oceánický slapový model”, Univerzita Karlova v Praze, 55 p.
  31. Luettich, R.A., Westerink, Jr. & Westerink, J.J., 1995, “Continental shelf scale convergence studies with a barotropic tidal model. Quantitative skill assessment for Coastal Ocean Models”, Amer. Geophys. Union press., vol. 48, pp. 349-371.
  32. Kowalik, Z., Proshutinsky, A.Y., 1993, “Diurnal tides in the Arctic Ocean”, J. Geophys. Res., vol. 98, no. C9, pp. 16449-16468.
  33. Kowalik, Z., Luick, J., 2013, “The Oceanography of Tides”, Fairbanks, 157 p.
  34. Kaplan, G., Bangert, J. [et al.], 2009, “User’s Guide to NOVAS 3.0”, Washington, U.S. Naval Observatory, 2009, 124 p.

Download the article (PDF)