Optical Features of the Black Sea Aerosol and the Sea Water Upper Layer Based on In Situ and Satellite Measurements

V.V. Suslin1, ✉, V.K. Slabakova2, D.V. Kalinskaya1, S.F. Pryakhina1, N.I. Golovko1

1 Marine Hydrophysical Institute, Russian Academy of Sciences, Sevastopol, Russian Federation

2 Institute of Oceanology BAS, Varna, Bulgaria

e-mail: slava.suslin@gmail.com

Abstract

The article gives the analysis of the quality of reconstructing basic aerosol characteristics (the aerosol optical depth AOD and the Ångström parameter Å) and the water-leaving radiance spectrum (normalized water-leaving radiance nLw) resulted from application of standard atmospheric correc-tion of satellite measurements data on the ascending over the Black Sea radiance obtained by the ocean color scanners MODIS-Aqua/Terra and VIIRS-SNPP. The analysis basis consists of the in situ measurements carried out at the AERONET and AERONET-OC stations synchronously with the satellite ones.

Joint analysis of simultaneous field and satellite measurement data reveals the problems in correct description of basic optical parameters of the Black Sea aerosol when the aerosol models are applied for standard atmospheric correction. A «compensation» effect (i.e. negative slope of the difference relation within AOD and Å for in situ and satellite data) is demonstrated, and its influence upon quality of standard atmospheric correction is assessed. It is shown that for the current version of atmospheric correction, the absolute nLw values turn out to be understated as compared to the in situ measurements. The result closer to the in situ data can be obtained by normalizing the satellite-derived nLw spectrum on its value in the 490 nm band.

Keywords

AERONET, ocean color scanners, quality of atmospheric correction, the Black Sea

For citation

Suslin, V.V., Slabakova, V.K., Kalinskaya, D.V., Pryakhina, S.F. and Golovko, N.I., 2016. Optical Features of the Black Sea Aerosol and the Sea Water Upper Layer Based on In Situ and Satellite Measurements. Physical Oceanography, (1), pp. 20-32. doi:10.22449/1573-160X-2016-1-20-32

DOI

10.22449/1573-160X-2016-1-20-32

References

  1. http://aeronet.gsfc.nasa.gov/Site_Lists/aeronet_locations_2014_lev20.txt (Access-October, 2015).
  2. Ivanov, A.P., Chaykovskiy, A.P. & Zege, E.P. [et al.], 2011, “Monitoring protsessov perenosa vzveshennykh v atmosfere chastits po dannym distantsionnykh i lokal'nykh izmereniy v Belarusi i sopredel'nykh regionakh [Monitoring of the transport processes of suspended particles in the atmosphere, according to local and remote measurements in Belarus and neighboring regions], Zbіrnik naukovikh statey III Vseukraїns'kogo z’їzdu ekologіv z mіzhnarodnoyu uchastyu, Vіnnitsya, vol. 2, pp. 362-365 (in Russian).
  3. Sakerin, S.M., Kabanov, D.M. & Panchenko, M.V. [et al.], 2005, “Rezul'taty monitoringa atmosfernogo aerozolya v aziatskoy chasti Rossii po programme AEROSIBNET v 2004 g. [Atmpspheric aerosol monitoring results in the Asian part of Russia according to AEROSIBNET program in 2004]”, Optika atmosfery i okeana, vol. 18, no. 11, pp. 968-975 (in Russian).
  4. Ulyumdzhieva, N.N., Chubarova, N.E. & Smirnov, A.N., 2005, “Kharakteristiki atmosfernogo aerozolya v Moskve po dannym solnechnogo fotometra CIMEL [Atmospheric aerosol characteristics in Moscow according to CIMEL sun photometer], Meteorologiya i gidrologiya, no.1, pp. 48-57 (in Russian).
  5. Smirnov, A., Holben, B.N. & Slutsker, I. [et al.], 2009, “Maritime Aerosol Network as a component of Aerosol Robotic Network”, J. Geophys. Res., vol. 114, no. D06204, doi: 10.1029/2008JD011257.
  6. Feldman, G.C., McClain, C.R., “Ocean Color Web, SeaWiFS Reprocessing 2010.0, MODIS-Terra Reprocessing 2013.0, MODIS-Aqua Reprocessing 2013.1, VIIRS-SNPP Reprocessing 2014.0”, NASA Goddard Space Flight Center, Eds. N. Kuring, S.W. Bailey, http: // oceancolor.gsfc.nasa.gov/ (Access-October, 2015).
  7. Sitnov S.A., 2011, “Sputnikovyy monitoring soderzhaniy gazovykh primesey atmosfery i opticheskikh kharakteristik atmosfernogo aerozolya nad evropeyskoy territoriey Rossii v aprele – sentyabre 2010 g. [Satellite monitoring of atmosphere gas admixture content and atmospheric aerosol optical characteristics over the European part of Russia in April-September 2010]”, Doklad RAN, vol. 437, no. 1, pp. 102-107 (in Russian).
  8. Suslin, V.V., 1992, “Uchet atmosfernykh faktorov pri vosstanovlenii spektral'nogo koeffitsienta yarkosti otkrytogo okeana po distantsionnym izmereniyam iz kosmosa [Admittance of the atmospheric factors in the reduction of the radiance coefficient of the open ocean by remote measurements from space]”, Avtoref. dis. … kand. fiz.-mat. nauk, Sevastopol, 20 p., http://elibrary.ru/item.asp?id=15755135 (in Russian).
  9. Gordon, H.R., Wang, M., 1994, “Retrieval of water-leaving radiance and aerosol optical thickness over the oceans with SeaWiFS: A preliminary algorithm”, Appl. Opt., no. 33, pp. 443-452.
  10. http://oceancolor.gsfc.nasa.gov/cms/atbd/rrs (Access-October, 2015).
  11. 2014, Phytoplankton Functional Types from Space, Ed. S. Sathyendranath, Reports of the International Ocean-Colour Coordinating Group, Canada, Dartmouth, no. 15, 163 p.
  12. Session “Remote Sensing of Phytoplankton Composition – Possibilities, Applications and Future Needs”, Second International Ocean Colour Science Meeting (USA, San Francisco, 15 – 18 June, 2015), http://iocs.ioccg.org/program/iocs-2015-presentations/.
  13. Suslin, V.V., Suetin, V.S. & Korolev, S.N. [et al.], 2007, “Desert dust effects in the results of atmospheric correction of satellite sea color observations”, Current Problems in Optics of Natural Waters: Proc. 4th Int. Conf. (Nizhny Novgorod, September 11 – 15, 2007), Nizhny Novgorod, pp. 184-187.
  14. Suslin, V.V., Tolkachenko, G.A. & Cristina, S., 2009, “Quality of the standard atmospheric products from the SeaWiFS and MODIS sensors over the Black and Mediterranean Seas”, Current Problems in Optics of Natural Waters: Proc. 5th Int. Conf. (St. Petersburg, September 8 – 12, 2009), St. Petersburg, pp. 317-321.
  15. http://oceancolor.gsfc.nasa.gov/cms/reprocessing (Access-October, 2015). 16 http://aeronet.gsfc.nasa.gov/new_web/Documents/version2_table.pdf (Access-October, 2015).
  16. Schoeberl, M.R., Newman, P.A., 1995, “A multiple-level trajectory analysis of vortex filaments”, J. Geophys. Res., vol. 100, no. D12, pp. 25801-25815.
  17. Pickering, K.E., Thompson, A.M. & Kim H. [et al.], 2001, “Trace gas transport and scavenging in PEM-Tropics B South Pacific Convergence Zone convection”, Ibid., vol. 106, no. D23, pp. 32591-32607.
  18. http://oceancolor.gsfc.nasa.gov/VALIDATION/flags.html (Access-October, 2015).
  19. http://aeronet.gsfc.nasa.gov/cgi-bin/type_one_station_seaprism_new?site=Gloria&nachal=2&level=1&place_code (Access-October, 2015).
  20. http://aeronet.gsfc.nasa.gov/cgi-bin/type_one_station_seaprism_new?site=Galata_Platform&nachal=2&level=1&place_code=10 (Access-October, 2015).
  21. Kalinskaya, D.V., Suslin, V.V., 2015, “Prostoy metod opredeleniya istochnikov prizemnogo aerozolya na osnove rezul'tatov analiza obratnykh traektoriy [Simple method of the determination of the surface aerosol based on the analysis results of the reverse trajectories]”, Fundamental'naya i prikladnaya gidrofizika, vol. 8, no. 1, pp. 59-67 (in Russian).
  22. Kahn, R.A., Garay, M.J. & Nelson, D.L. [et al.], 2007, “Satellite derived aerosol optical depth over dark water from MISR and MODIS: Comparisons with AERONET and implications for climatological studies”, J. Geophys. Res., vol. 112, no. D18205, doi: 10.1029/2006JD008175.
  23. Suslin, V.V., Churilova, T.Ya. & Dzhulay, A. [et al.], “Regional'nyy algoritm vosstanovleniya kontsentratsii khlorofilla «a» i koeffitsienta pogloshcheniya sveta nezhivym organicheskim veshchestvom na dline volny 490 nm v Chernom more dlya spektral'nykh kanalov tsvetovykh skanerov MODIS i MERIS [Regional algorithm of chlorophyll a concentration and coefficient of light absorption by detrital matter on 490 nm wavelength in the black sea for SEAWIFS, MODIS and MERIS bands]”, Ekologicheskaya bezopasnost' pribrezhnoy i shel'fovoy zon i kompleksnoe ispol'zovanie resursov shel'fa, Sevastopol, ECOSI-Gidrofizika, iss. 28, pp. 303-319, http://blackseacolor.com/Site/Papers/suslinchurilova.pdf (in Russian).
  24. Suslin, V.V., Churilova, T.Ya., 2015, “Trekhkanal'nyy metod razdeleniya pogloshcheniya sveta fitoplanktonom i nezhivym organicheskim veshchestvom: prilozhenie k distantsionnomu zondirovaniyu v vidimom diapazone spektra [The three-channel method for separating the absorption of light by phytoplankton and non-living organic matter: application to remote sensing in the visible range of the spectrum]”, Tr. VIII Mezhdunar. konf. «Sovremennye problemy optiki estestvennykh vod» (ONW'2015) (Sankt-Peterburg, 8 – 12 sentyabrya 2015 g.), Saint Petersburg, pp. 199 – 203 (in Russian).

Download the article (PDF)