Investigation of the Effect of the Baric Formation Parameters on Free and Forced Oscillations of the Level and Flow in the Sea of Azov

L.V. Cherkesov, T.Ya. Shul’ga

Marine Hydrophysical Institute, Russian Academy of Sciences, Sevastopol, Russian Federation

e-mail: shulgaty@mail.ru

Abstract

The effect of inhomogeneous moving atmospheric pressure fields upon the flows, and free and forced oscillations of the Azov Sea level induced by constant wind is studied by the method of mathematical modeling. The hypothesis on the role of the resonance mechanism in arising of the extremely high amplitudes of the surge oscillations and seiches generated by a baric field moving at the velocity equal to that of a free long wave is tested. The equations of the applied mathematical model are described in general, transition to the curvilinear coordinates is shown, the model parameters chosen allowing for different physical factors are substantiated, and the features of the model numerical realization are explained. The information on the wind and atmospheric pressure fields used in the numerical experiments is given. The results of simulations of free oscillations in the Sea of Azov are discussed with the purpose to analyze the impact of the resonance characteristics related to the speed and time of the baric fields’ motion over the sea. The sea level deviations resulted from the calculations with constant pressure and those with passing of the inhomogeneous baric front are compared. It is revealed that at one and the same wind, the baric disturbances moving over the Sea of Azov induce the forced oscillations and after their forcing is stopped – free oscillations the amplitudes of which exceed those obtained at constant atmospheric pressure by 14%. It is shown that the baric front motion, speed and time of which are chosen based on the assumption on generation of the waves with maximum amplitudes, plays an important but not decisive role in formation of the currents’ structure and the level oscillations in the Sea of Azov.

Keywords

the Sea of Azov, sigma-coordinate model, free oscillations of liquid, seiches, stationary currents, storm surges, nodal lines, atmospheric front, free long wave velocity

For citation

Cherkesov, L.V. and Shul’ga, T.Ya., 2016. Investigation of the Effect of the Baric Formation Parameters on Free and Forced Oscillations of the Level and Flow in the Sea of Azov. Physical Oceanography, (4), pp. 12-24. doi:10.22449/1573-160X-2016-4-12-24

DOI

10.22449/1573-160X-2016-4-12-24

References

  1. Monin, A.S. “Klassifikatsiya nestatsionarnykh protsessov v okeane [Classification of non-stationary processes in the ocean]”, Izv. AN SSSR, no. 7, pp. 26-30 (in Russian).
  2. Kamenkovich, V.M., Koshlyakov, M.N. & Monin, A.S., 1987, “Sinopticheskie vikhri v okeane [Synoptical eddies in the ocean]”, Saint Petersburg, Gidrometeoizdat, 512 p. (in Russian).
  3. German, V.Kh., 1971, “Issledovanie i raschet veroyatnostnykh kharakteristik ekstremal'nykh urovney morya [Investigation and calculation of probabilistic characteristics of extreme sea levels]”, Tr. GOIN, iss. 107, 148 p. (in Russian).
  4. Matishov, G.G., Inzhebeykin, Yu.I., 2009, “Chislennye issledovaniya seysheobraznykh kolebaniy urovnya Azovskogo morya [Numerical investigations of seiche-like oscillations of the Sea of Azov level]”, Okeanologiya, vol. 49, no. 4, pp. 485-493 (in Russian).
  5. Sirotov, K.M., Sidel'nikova, T.M., 1984, “Opyt rascheta skorosti vetra i vysoty voln v zone kholodnogo fronta [The experience of wind velocity and wave height in the cold front zone]”, Tr. Gidromettsentra SSSR, iss. 263, pp. 72-75 (in Russian).
  6. Bykov, F.L., Gordin, V.A., 2014, “Ob’ektivnyy analiz struktury atmosfernykh frontov [Objective analysis of atmospheric front structure]”, Izv. RAN. Fizika atmosfery i okeana, vol. 48, no. 2, pp. 172-188 (in Russian).
  7. Nesterov, E.S., 2013, “Rezhim, diagnoz i prognoz vetrovogo volneniya v moryakh i okeanakh [Regime, diagnosis and forecast of wind waves in the seas and oceans]”, Moscow, Rosgidromet, 337 p. (in Russian).
  8. Efimov, V.V., Anisimov, A.E., 2011, “Chislennoe modelirovanie vliyaniya temperaturnykh kontrastov susha - more na atmosfernuyu tsirkulyatsiyu v Chernomorskom regione [Numerical modeling of sea - land temperature contrast effect on atmospheric circulation in the Black Sea region]”, Morskoy gidrofizicheskiy zhurnal, no. 4, pp. 3-12 (in Russian).
  9. Efimov, V.V., Barabanov, V.S. & Krupin, A.V., 2012, “Modelirovanie mezomasshtabnykh osobennostey atmosfernoy tsirkulyatsii v Krymskom regione Chernogo morya [Modeling of mesoscale features of atmospheric circulation in the Crimean region of the Black Sea]”, Morskoy gidrofizicheskiy zhurnal, no. 1, pp. 64-74 (in Russian).
  10. Ivanov, V.A., Cherkesov, L.V. & Shul'ga, T.Ya., 2010, “Dinamicheskie protsessy i ikh vliyanie na rasprostranenie i transformatsiyu zagryaznyayushchikh veshchestv v ogranichennykh morskikh basseynakh [Dynamical processes and their effect on pollutant propagation and transformation in the bounded marine basins]”, Sevastopol, MGI NAN Ukrainy, 178 p. (in Russian).
  11. Ivanov, V.A., Cherkesov, L.V. & Shul'ga, T.Ya., 2014, “Dinamicheskie protsessy i ikh vliyanie na transformatsiyu passivnoy primesi v Azovskom more [Dynamical prosesses and their effect on passive impurity transformation in the Sea of Azov]”, Okeanologiya, no. 4, pp. 464-472 (in Russian).
  12. Ivanov, V.A., Cherkesov, L.V. & Shul’ga, T.Ya., 2015, “Issledovanie svobodnykh kolebaniy urovnya Azovskogo morya, voznikayushchikh posle prekrashcheniya dlitel'nogo deystviya vetra [Studies of Free Fluctuations of the Azov Sea Level Arising after the Termination of Prolonged Wind Effect]”, Morskoy gidrofizicheskiy zhurnal, no. 2, pp. 15-24 (in Russian).
  13. Labzovskiy, N.A., 1971, “Neperiodicheskie kolebaniya urovnya morya [Non-periodic oscillations of a sea level]”, Saint Petersburg, Gidrometeoizdat, 238 p. (in Russian).
  14. Blumberg, A.F., Mellor, G.L., 1987, “A description of three dimensional coastal ocean circulation model”, Three-Dimensional Coastal Ocean Models, vol. 4, pp. 1-16.
  15. Fomin, V.V., 2002, “Chislennaya model' tsirkulyatsii vod Azovskogo morya [Numerical model of the Azov Sea water circulation]”, Nauchnye trudy UkrNIGMI, iss. 249, pp. 246-255 (in Russian).
  16. Cherkesov, L.V., Ivanov, V.A. & Chartiev, S.M., 1992, “Vvedenie v gidrodinamiku i teoriyu voln [Introduction to the hydrodynamics and wave theory]”, Saint Petersburg, Gidrometeoizdat, 264 p. (in Russian).
  17. Mellor, G.L., Yamada, T., 1982, “Development of a turbulence closure model for geophysical fluid problems”, Rev. Geophys. Space Phys., vol. 20, no. 4, pp. 851-875.
  18. Smagorinsky, J., 1963, “General circulation experiments with primitive equations, I. The basic experiment”, Mon. Wea. Rev., vol. 91, no. 3, pp. 99-164.
  19. Large, W.G., Pond, S., 1981, “Open ocean momentum fluxes in moderate to strong winds”, J. Phys. Oceanogr., vol. 11, pp. 324-336.
  20. Powell, M.D., Vivkery, P.J. & Reinhold, T.A., 2003, “Reduced drag coefficient for high wind speeds in tropical cyclones”, Nature, vol. 422, no. 20, pp. 278-283.
  21. Sweby, P.K., 1984, “High resolution schemes using flux limiters for hyperbolic conservation laws”, SIAM. J. Numer. Analys., vol. 21, no. 5, pp. 995-1011.
  22. Courant, R., Friedrichs, K.O. & Lewy, H., 1967, “On the partial difference equations of mathematical physics”, IBM J., pp. 215-234.
  23. 1986, “Gidrometeorologicheskie usloviya shel'fovoy zony morey SSSR. Tom III. Azovskoe more [Hydrometeorological conditions of shelf zone of the USSR seas. Vol. III. The Sea of Azov]”, Leningrad, Gidrometeoizdat, 218 p. (in Russian).
  24. 1962, “Gidrometeorologicheskiy spravochnik Azovskogo morya [Hydrometeorological handbook of the Sea of Azov]”, Leningrad, Gidrometeoizdat, 247 p. (in Russian).
  25. Masterskikh, M.A., 1980, “Metodicheskoe posobie po sostavleniyu prognoza frontal'noy bory [Methodological manual on frontal bora forecasting]”, Leningrad, Gidrometeoizdat, 35 p. (in Russian).

Download the article (PDF)