Improvement of the Method for Reconstructing the Temperature and Salinity Three-Dimensional Fields of the Black Sea Based on Insufficient Measurements and Altimetry

V.V. Knysh, P.N. Lishaev

Marine Hydrophysical Institute, Russian Academy of Sciences, Sevastopol, Russian Federation

e-mail: vaknysh@yandex.ru

Abstract

The article represents the results of two special numerical experiments aimed at improving the previously proposed procedure of reconstructing salinity and temperature three-dimensional fields based on the altimetry data and the insufficient measurements performed at the stations and the Argo buoys in 2012. In the Experiment 1, the monthly average coefficients of sea level linear dependence and depths where the salinity values of the “zero” gradation altimetry level profile lie within the salinity profiles of positive and negative gradations are applied. The procedure for calculating the daily average coefficients of the depth linear trends is realized in the Experiment 2. It is shown that the thermohaline fields reconstructed in the Experiment 2 for the deepwater area are more accurate; on the horizons of the 100–500 m layer their values range smoothly from one day to another. The Black Sea hydrophysical fields are reconstructed by assimilation in the model of three-dimensional thermohaline parameters in the reanalysis for 2012. It is revealed that, as compared to the observations on the overwhelming majority of horizons in the 0–500 m layer (the Experiment 2), the standard root-mean-square deviations of temperature and salinity are lower than those in Experiment 1. The root of the measured salinity field dispersion exceeds the standard deviations on all the horizons within 0–500 m, inclusive. Application of the daily average coefficients of the linear trends for reconstructing three-dimensional fields of temperature and salinity, and their subsequent assimilation in the model is preferable. It is revealed that the model of the upper 0–100 m layer thermodynamics requires improvement.

Keywords

altimetry, Argo buoys, reconstruction procedure, coefficients of trends, three-dimensional fields, reanalysis

For citation

Knysh, V.V. and Lishaev, P.N., 2016. Improvement of the Method for Reconstructing the Temperature and Salinity Three-Dimensional Fields of the Black Sea Based on Insufficient Measurements and Altimetry. Physical Oceanography, (6), pp. 3-14. doi:10.22449/1573-160X-2016-6-3-14

DOI

10.22449/1573-160X-2016-6-3-14

References

  1. Korotaev, G.K., Demyshev, S.G. & Dorofeev, V.L. [et al.], 2013, “Arhitektura i rezul’taty raboty Mezhdunarodnogo Chernomorskogo centra morskih prognozov, sozdannogo na baze MGI NAN Ukrainy v ramkah proekta Evropejskogo Soyuza “Moj Okean [Architecture and results of work of the Black Sea Marine Forecast Center established on the basis of MHI NAS of Ukraine within the framework of European Commission project MyOcean]”, Ekologicheskaya bezopasnost' pribrezhnoy i shel'fovoy zon i kompleksnoe ispol'zovanie resursov shel'fa, iss. 27, pp. 128-133 (in Russian).
  2. Lishaev, P.N., Korotaev, G.K. & Knysh, V.V. [et al.], 2014, “Vosstanovlenie sinopticheskoy izmenchivosti gidrofizicheskikh poley Chernogo morya na osnove reanaliza za 1980-1993 gody [Reconstruction of Mesoscale Variability of the Black Sea Hydrophysical Fields on the Basis of Reanalysis for 1980-1993]”, Ekologicheskaya bezopasnost' pribrezhnoy i shel'fovoy zon i kompleksnoe ispol'zovanie resursov shel'fa, no. 5, pp. 49-68 (in Russian).
  3. Ratner, Yu.B., Kubryakov, A.I. & Kholod, A.L. [et al.], 2014, “Ispol’zovanie dannykh izmereniy s dreyfuyushchikh buev SVP-BTS i Argo dlya validatsii rezul’tatov prognoza temperatury vody v pribrezhnoy oblasti Chernogo morya [The usage of SVP-BTS and Argo drifting buoy data for validation of water temperature forecast results in the Black Sea coastal area]”, Morskoy gidrofizicheskiy zhurnal, no. 5, pp. 33-48 (in Russian).
  4. Kubryakov, A.I., 2004, “Primenenie tekhnologii vlozhennykh setok pri sozdanii sistemy monitoringa gidrofizicheskikh poley v pribrezhnykh rayonakh Chernogo morya [The use of technology to create nested grids in the creation of monitoring system of hydrophysical fields in the Black Sea coastal areas]”, Ekologicheskaya bezopasnost' pribrezhnoy i shel'fovoy zon i kompleksnoe ispol'zovanie resursov shel'fa, Sevastopol, iss. 11, pp. 31-50 (in Russian).
  5. Blumberg, A.F., Mellor, G.L., 1987, “A description of a three-dimensional coastal ocean model. Three Dimensional Shelf Models”, Coast. Estuar. Sci., V. 5, Washington D.C., AGU, pp. 1-16.
  6. Hunter, J.R., 2002, “OzPOM: A version of the Princeton Ocean Model”, http://www.antcrc.utas.edu.au/johunter/ozpom.html.
  7. Dorofeev, V.L., Sukhih, L.I., 2016, “Analysis of Variability of the Black Sea Hydrophysical Fields in 1993 – 2012 Based on the Reanalysis Results”, Physical Oceanography, no. 1, pp. 33-47, doi: 10.22449/1573-160X-2016-1-33-47
  8. Korotaev, G.K., Lishaev, P.N. & Knysh, V.V., 2015, “Technique of the Black Sea Temperature and Salinity Measurement Data Analysis Using Dynamic Altimetry Level”, Physical Oceanography, no. 2, pp. 24-38, doi: 10.22449/1573-160X-2015-2-24-38
  9. Korotaev, G.K., Lishaev, P.N. & Knysh, V.V., 2016, “Vosstanovlenie trekhmernykh poley solenosti i temperatury Chernogo morya po dannym sputnikovykh al’timetricheskikh izmereniy [Reconstruction of Three-Dimensional Fields of Temperature and Salinity Based on Satellite Altimetry]”, Issledovanie Zemli iz kosmosa, no. 1-2, pp. 199-212 (in Russian).
  10. AVISO – Archivage Validation Interprétation des données des Satellites Océanographiques, http://www.aviso.oceanobs.com/.
  11. Le Traon, P. Y., Dibarboure, G. & Ducet, N., 2001, “Use of a high-resolution model to analyze the mapping capabilities of multiple-altimeter missions”, J. Atmos. Ocean. Technol., vol. 18, no. 7, pp. 1277-1288, doi: 10.1175/1520-0426(2001)0181277:\UOHARM2.0.CO;2
  12. Pascual, A., Faugère, Y. & Larnicol, G. [et al.], 2006, “Improved description of the ocean mesoscale variability by combining four satellite altimeters”, Geophys. Res. Lett., vol. 33, no. 3, P. 2611-2614.
  13. Kubryakov, A.A., Stanichny, S.V., 2013, “Estimating the quality of the retrieval of the surface geostrophic circulation of the Black Sea by satellite altimetry data based on validation with drifting buoy measurements”, Izvestiya. Atmos. Ocean. Phys., vol. 49, no. 9, pp. 930-938.
  14. Knysh, V.V., Kubryakov, A.I. & Inyushina, N.V. [et al.], 2008, “Vosstanovlenie klimaticheskoy sezonnoy tsirkulyatsii Chernogo morya na osnove modeli v σ-koordinatakh s ispol’zovaniem assimilyatsii dannykh o temperature i solenosti [The Black Sea seasonal climatic circulation renewal based on the model in σ-coordinates applying temperature and salinity data assimilation]”, Ekologicheskaya bezopasnost' pribrezhnoy i shel’fovoy zon i kompleksnoe ispol’zovanie resursov shel’fa, vol. 16, pp. 243-265 (in Russian).
  15. Leonov, A.K., 1960, “Regional’naya okeanografiya. Chast' 1. Beringovo, Okhotskoe, Yaponskoe, Kaspiyskoe i Chernoe morya [Regional oceanography. Part 1: the Bering, Okhotsk, Japan, Caspian and Black Sea]”, Leningrad, Gidrometeoizdat, 765 p. (in Russian).
  16. Ivanov, V.A., Belokopytov, V.N., 2011, “Okeanografiya Chernogo morya [The Black Sea Oceanography]”, Sevastopol, ECOSI-Gidrofizika, 209 p. (in Russian).
  17. Korotaev, G., Dorofeev, V. & Oguz, T. [et al.], 2011, “The MyOcean Black Sea coupling of dynamics and ecosystem”, Mercator Ocean Quart. Newslet., vol. 40, pp. 26-35.
  18. Kubryakov, A.A., Stanichny, S.V., 2015, “Seasonal and interannual variability of the Black Sea eddies and its dependence on characteristics of the large-scale circulation”, Deep-Sea Res. Part I: Ocean. Res. Papers, vol. 97, pp. 80-91, http://dx.doi.org/10.1016/j.dsr.2014.12.002.
  19. Gandin, L.S., Kagan, R.A., 1976, “Statisticheskie metody interpretatsii meteorologicheskikh dannykh [Statistical methods for the meteorological data interpretation]”, Leningrad, Gidrometeoizdat, 357 p. (in Russian).
  20. Sarmiento, J.L., Bryan, K., 1982, “An ocean transport model for the North Atlantic”, J. Geoph. Res., vol. 87, iss. C1, pp. 394-408, doi:10.1029/JC087iC01p00394
  21. Pacanowski, R.C., Philander, S.G.H., 1981, “Parameterization of vertical mixing in numerical models of tropical oceans”, J. Phys. Oceanogr., no. 11, pp. 1443-1451, doi: 10.1175/1520-0485(1981)0111443:POVMIN2.0.CO;2
  22. Ibraev, R.A., Trukhchev, D.I., 1998, “Model study of the seasonal variability of the Black Sea circulation”, NATO TU, Black Sea project ecosystem modeling as a management tool for Black Sea, symposium on Scientific results, Dordrecht, Kluwer Academic Publishers, vol. 2, pp. 179-196.
  23. Berrisford, P., Dee, D. & Fielding, K. [et al.], 2009, “The ERA-Interim archive Version 1.0”, ERA Rep. Ser.-ECMWF, 16 p., www.ecmwf.int.
  24. Korotaev, G.K., Sarkisyan, A.S. & Knysh, V.V. [et al.], 2016, “Reanalysis of seasonal and interannual variability of Black Sea fields for 1993–2012”, Izvestiya. Atmos. Ocean. Phys., vol. 52, iss. 4, pp. 418-430, doi: 10.1134/S0001433816040071
  25. Kolesnikov, A.G., 1953, “K vychisleniyu godovogo khoda temperatury vody v yuzhnykh moryakh [On the calculation of the annual water temperature variation in the Southern seas]”, Tr. Morskogo gidrofizicheskogo instituta AN SSSR, vol. 3, pp. 106-127 (in Russian).
  26. Korotaev, G.K., Knysh, V.V. & Kubryakov, A.I., 2014, “Study of formation process of cold intermediate layer based on reanalysis of Black Sea hydrophysical fields for 1971–1993”, Izvestiya. Atmos. Ocean. Phys., vol. 50, iss. 1, pp. 35-48.
  27. Ilyin, Y.P., Repetin, L.N., & Belokopytov, V.N. [et al.], 2012, “Gidrometeorologicheskie usloviya morey Ukrainy. T. 2. Chernoe more [Ukrainian Hydrometeorological conditions of the seas. Vol. 2. The Black Sea]”, Sevastopol, ECOSI-Gidrofizika, 420 p. (in Russian).

Download the article (PDF)