Parameters of the Azov-Black Sea Region Precipitation Based on the Model and Observational Data

D.A. Iarovaia, V.L. Pososhkov

Marine Hydrophysical Institute, Russian Academy of Sciences, Sevastopol, Russian Federation

e-mail: daryk777@inbox.ru

Abstract

The results of precipitation simulation in the Azov-Black Sea region are verified using the observational data from the meteorological stations of the North Eurasia Climate Centre. In particular, the results of global (MERRA) and regional (PRECIS and RegCM) reanalyses are considered. Verification is done in accordance to two criteria: “index of agreement” and “probability of detection”. Reliability of the precipitation basic parameters (intensity and frequency) is assessed; the modeled and the measured distribution functions of daily precipitation are compared. It is shown that in all the reanalyses the results of the winter precipitation modeling are in better agreement with the observational data than those resulted from the summer precipitation modeling. In summer, according to certain parameters, the regional reanalyses are in better agreement with the observational data than the global reanalysis. Particular attention is paid to the data obtained at the meteorological station located in the region of complex orography and intensive precipitation (Sochi). It is shown that the winter precipitation in Sochi derived from the regional reanalyses is significantly overestimated, especially as for the extreme precipitation.

Keywords

precipitation reanalysis, precipitation in the Azov-Black Sea region, reanalysis verificati-on, regional modeling, distribution function

For citation

Iarovaia, D.A. and Pososhkov, V.L., 2017. Parameters of the Azov-Black Sea Region Precipitation Based on the Model and Observational Data. Physical Oceanography, (1), pp. 11-24. doi:10.22449/1573-160X-2017-1-11-24

DOI

10.22449/1573-160X-2017-1-11-24

References

  1. Anisimov, A.E., Iarovaia, D.A. & Barabanov, V.S., 2015, “Reanalysis of Atmospheric Circulation for the Black Sea-Caspian Region”, Physical Oceanography, no. 4, pp. 13-25, doi:10.22449/1572-160X-2015-4-13-25
  2. Iarovaia, D.A., Efimov, V.V., 2016, “Numerical Climatic Estimations of Precipitation and Surface Air Temperature for the Black Sea Region”, Physical Oceanography, no. 3, pp. 57-69, doi:10.22449/1572-160X-2016-3-57-69
  3. Elguindi, N., Bi, X. & Giorgi, F. [et al.], 2011, “Regional climatic model RegCM user manual. Version 4.3.”, Trieste, Italy, International Centre for Theoretical Physics, 32 p., URL: https://gforge.ictp.it/gf/download/docmanfileversion/31/753/ReferenceMan.pdf (reference date: 16.02.2016).
  4. Rienecker, M.M., Suarez, M.J. & Gelaro, R. [et al.], 2011, “MERRA: NASA's modern-era retrospective analysis for research and applications”, J. Clim., vol. 24, no. 14, pp. 3624-3648.
  5. Anisimov, A.E., Pososhkov, V.L., 2014, “Otsenki parametrov atmosfernykh osadkov v chernomorskom regione [Estimations of Precipitation in the Black Sea Region]”, Ser. Sredstva i informatsionnye tekhnologii, vol. 20, pp. 132-135 (in Russian).
  6. Dee, D.P., Uppala, S.M. & Simmons, A.J. [et al.], 2011, “The ERA-Interim reanalysis: configuration and performance of the data assimilation system”, Quart. J. Roy. Meteorol. Soc., vol. 137, iss. 656, pp. 553-597, doi:10.1002/qj.828
  7. 2002, Standardized Verification System (SVS) for Long-Range Forecasts (LRF). New Attachment II-9 to the Manual on the GDPS (WMO-No. 485), Geneva, WMO, vol. I, 24 р.
  8. URL: http://seakc.meteoinfo.ru/actuals/9-catalogue-stations-international-exchange/3-223-daily-series (access date: 16.02.2016).
  9. URL: http://eca.knmi.nl/(access date: 16.02.2016).
  10. Jones, R.G., Noguer, M. & Hassell, D.C., 2004, “Generating High Resolution Climate Change Scenarios Using PRECIS”, Exeter, UK, Met Office Hadley Centre, 40 p.
  11. Marzban, C., Stumpf, G.J., 1998, “A neural network for damaging wind prediction”, Weath. Forecast, vol. 13, no. 1, pp. 151-163.
  12. Willmott, C., 1982, “Some comments on the evaluation of model performance”, Bull. Amer. Meteorol. Soc., vol. 63, no. 11, pp. 1309-1313, doi:http://dx.doi.org/10.1175/1520-0477(1982)0631309:SCOTEO2.0.CO;2
  13. Wilks, D.S., 1995, “Statistical Methods in the Atmospheric Sciences”, New York, Academic Press, 464 p., ISBN-10: 0127519653.
  14. Schultz, P., 1995, “An explicit cloud physics parametrization for operational numerical weather prediction”, Mon. Wea. Rev., vol. 123, no. 11, pp. 3331-3343.
  15. Lipinskiy, V.M., Dyachuk, V.A., & Babichenko, V.N., 2003, “Klimat Ukrainy [The Climate of Ukraine]”, Kiev, Izd-vo Raevskogo, 343 p. (in Russian).
  16. Efimov, V.V., Shakalova, E.S. & Gubanova, E.V., 2006, “Otsenka izmeneniya ekstremal'nykh osadkov Chernomorskogo regiona v XX stoletii [Estimation of variation of the Black Sea region extreme precipitation in the 20th century]”, Morskoy gidrofizicheskiy zhurnal, pp. 73-77 (in Russian).

Download the article (PDF)