Identification of the Parameters of the Instantaneous Point Pollution Source in the Azov Sea Based on the Adjoint Method

V.S. Kochergin, S.V. Kochergin

Marine Hydrophysical Institute, Russian Academy of Sciences, Sevastopol, Russian Federation

e-mail: vskocher@gmail.com

Abstract

The passive admixture transport model in the Azov Sea is considered. The problem of cartelistic impulse local source identification at the sea surface based on adjoint method is solving by integration of independent series of adjoint tasks. Simultaneous solution of this problem at the parallel mode is realized by the aforementioned approach. The efficiency of the algorithm optimal value power of source search agreed with the data measurements is shown in the test example. The measurement data assimilation algorithm in the passive admixture transfer model is implemented applying variational methods of filtration for optimal estimate retrieval. The retrieval is carried out by means of the method of adjoint equations and solving of linear systems. On the basis of the variational filtration method of data assimilation, the optimal estimate retrieval algorithm for pollution source power identification is constructed. In application of the algorithm, the integration of the main, linked and adjoint problems is implemented. Integration problems are solved using TVD approximations. For the application of the procedure, the Azov current fields and turbulent diffusion coefficients are obtained using the sigma coordinate ocean model (POM) under the eastern wind stress conditions being dominant at the observed time period. Furthermore, the results can be used to perform numerical data assimilation on loads of suspended matter.

Keywords

power source identification, concentration field, assimilation of measurement data, admixture transport, adjoint problem, the Azov Sea

For citation

Kochergin, V.S. and Kochergin, S.V., 2017. Identification of the Parameters of the Instantaneous Point Pollution Source in the Azov Sea Based on the Adjoint Method. Physical Oceanography, (1), pp. 62-67. doi:10.22449/1573-160X-2017-1-62-67

DOI

10.22449/1573-160X-2017-1-62-67

References

  1. Ivanov, V.A., Fomin, V.V., 2008, “Matematicheskoe modelirovanie dinamicheskikh protsessov v zone more-susha [Mathematical modeling of the dynamic processes in the zone sea-land]”, Sevastopol, ECOSI-Gidrofizika, 363 p. (in Russian).
  2. Marchuk, G.I., Penenko, V.V., 1978, “Application of optimization methods to the problem of mathematical simulation of atmospheric processes and environment”, Modeling and Optimization of Complex Systems, Ed. G.I. Marchuk, Proc. оf the IFIP-TC7 Working conf., New York, Springer, pp. 240-252.
  3. Kochergin, V.S., Kochergin, S.V., 2010, “Ispol’zovanie variatsionnykh printsipov i resheniya sopryazhennoy zadachi pri identifikatsii vkhodnykh parametrov modeli perenosa passivnoy primesi [Application of adjoint problem principles and solution during the identification of the passive admixture transport model input parameters]”, Ekologicheskaya bezopasnost' pribrezhnoy i shel’fovoy zon i kompleksnoe ispol’zovanie resursov shel’fa, iss. 22, pp. 240-244 (in Russian).
  4. Penenko, V.V., 1981, “Metody chislennogo modelirovaniya atmosfernykh protsessov [Numerical simulation methods of the atmospheric processes]”, Leningrad, Gidrometeoizdat, 350 p. (in Russian).
  5. Agoshkov, V.I., Parmuzin, E.I. & Shutyaev, V.P., 2013, “Assimilyatsiya dannykh nablyudeniy v zadache tsirkulyatsii Chernogo morya i analiz chuvstvitel'nosti ee resheniya [Assimilation of observational data in the problem of the circulation of the Black Sea and a sensitivity analysis of its decision]”, Izv. RAN. Fizika atmosfery i okeana, vol. 49, no. 6, pp. 643-654 (in Russian).
  6. Shutyaev, V.P., Le Dime, F. & Agoshkov, V.I. [et al.], 2015, “Chuvstvitel'nost' funktsionalov zadach variatsionnogo usvoeniya dannykh nablyudeniy [The sensitivity of the functional problems of variational observation data assimilation]”, Fizika atmosfery i okeana, vol. 51, no. 3, pp. 392-400 (in Russian).
  7. Ryabtsev, Yu.N., Shapiro, N.B., 2009, “Opredelenie nachal'nogo polozheniya obnaruzhennykh v otkrytoy chasti morya poverkhnostnykh linz ponizhennoy solenosti primesi [Defining the initial position found in the open sea surface salinity lenses reduced impurities]”, Ekologicheskaya bezopasnost' pribrezhnoy i shel'fovoy zon i kompleksnoe ispol'zovanie resursov shel'fa, iss. 18, pp. 141-157 (in Russian).
  8. Kochergin, V.S., Kochergin, S.V., 2015, “Identification of a Pollution Source Power in the Kazantip Bay Applying the Variation Algorithm”, Physical Oceanography, no. 2, pp. 79-88, doi:10.22449/1573-160X-2015-2-69-76
  9. Marchuk, G.I., 1982, “Matematicheskoe modelirovanie v probleme okruzhayushchey sredy [Mathematical modeling in environmental problem]”, Moscow, Nauka, 320 p. (in Russian).
  10. Kochergin, V.S., 2011, “Opredelenie polya kontsentratsii passivnoy primesi po nachal'nym dannym na osnove resheniya sopryazhennykh zadach [Determining the concentration of a passive admixture transport field in the initial data on the basis of solutions of adjoint problems]”, Ekologicheskaya bezopasnost' pribrezhnoy i shel'fovoy zon i kompleksnoe ispol'zovanie resursov shel'fa, iss. 25, vol. 2, pp. 270-376 (in Russian).
  11. Strakhov, V.N., 1991, “Metod fil'tratsii sistem lineynykh algebraicheskikh uravneniy-osnova dlya resheniya lineynykh zadach gravimetrii i magnitometrii [The method of filtering systems of linear algebraic equations – the basis for the solution of linear problems of gravity and magnetic measurements]”, Dokl. AN SSSR, vol. 320, no. 3, pp. 595-599 (in Russian).
  12. Eremeev, V.N., Kochergin, V.P., Kochergin, S.V. & Sklyar, S.N., 2002, “Matematicheskoe modelirovanie gidrodinamiki glubokovodnykh basseynov [Mathematical modeling of hydrodynamics of deep water basins]”, Sevastopol, ECOSI-Gidrofizika, 238 p. (in Russian).

Download the article (PDF)