Polar Frontal Zone of the Barents Sea Western Trough Based on the Direct Measurements in 2007

A.N. Morozov1, ✉, V.K. Pavlov2, O.A. Pavlova2, S.V. Fedorov1

1 Marine Hydrophysical Institute, Russian Academy of Sciences, Sevastopol, Russian Federation

2 Norwegian Polar Institute, Tromsø, Norway

e-mail: anmorozov@mhi-ras.ru

Abstract

The results of measurements carried out in summer, 2007 in the north-western part of the Barents Sea are discussed. The ship weather station and the vessel mounted Acoustic Doppler current profiler VMADCP150 are used to carry out measurements in the vessel motion. CTD/LADCP-sensing is performed at the drift stations. The minimum horizontal scale of a temperature front is 0.5 km, whereas the maximum horizontal gradient of water temperature is 4 °C/km. The width of the North Cape Current Northern branch is ~8 km that is three times larger than the Rossby radius of deformation. Position of the temperature front coincides with that of the jet stream core. The characteristics of small-scale vertical structure of water dynamics and density stratification in the polar frontal zone are discussed. The averaged annual variability of temperature and salinity vertical structure in the area of the Spitsbergen Bank and the Hopen Deep are represented. The intra-annual variability of water salinity in the Hopen Deep calculated based on the historical database of hydrological data, revealed the presence of variations with a period of four months. Based on satellite observations, position of the temperature front in the area of research is defined.

Keywords

polar frontal zone, Spitsnbergen Bank, the Hopen Deep, Western trough of the Barents Sea, the North Cape Current Northern branch, ADCP

For citation

Morozov, A.N., Pavlov, V.K., Pavlova, O.A. and Fedorov, S.V., 2017. Polar Frontal Zone of the Barents Sea Western Trough Based on the Direct Measurements in 2007. Physical Oceanography, (2), pp. 36-50. doi:10.22449/1573-160X-2017-2-36-50

DOI

10.22449/1573-160X-2017-2-36-50

References

  1. Fedorov, K.N., 1983. Fizicheskaya Priroda i Struktura Okeanicheskikh Frontov [The Physical Nature and Structure of Oceanic Fronts]”. Leningrad: Gidrometeoizdat, 296 p. (in Russian).
  2. Rodionov, V.B. and Kostyanoy, A.G., 1998. Okeanicheskie Fronty Morey Severo-Evropeyskogo Basseyna [Oceanic Fronts of the North European Basin Seas]. Moscow: GEOS, 290 p. (in Russian).
  3. Harris, C.L., Plueddemann, A.J. and Gawarkiewicz, G.G., 1998. Water Mass Distribution and Polar Front Structure in the Western Barents Sea. J. Geophys. Res., [e-journal] 103 (С2), pp. 2905-2917. doi:10.1029/97JC02790
  4. Golubev, V.A. and Zuev, A.N., 1999. Barents and Kara Seas Oceanographic Data Base (BarKode) / C. Oelke, ed. IACPO Informal Report No. 5. The International ACSYS/CLIC Project Office, Bremerhaven, PANGAEA. doi:10013/epic.28428
  5. Joyce, T.M., 1989. On In Situ “Calibration” of Shipboard ADCPs. J. Atmos. Oceanic Technol., [e-journal] 6(1), pp. 169-172. doi:10.1175/1520-0426(1989)006<0169:OISOSA>2.0.CO;2
  6. Pollard, R. and Read, J., 1989. A Method for Calibrating Shipmounted Acoustic Doppler Profilers and the Limitations of Gyro Compasses. J. Atmos. Oceanic Technol., [e-journal] 6(6), pp. 859-865. doi:10.1175/1520-0426(1989)006<0859:AMFCSA>2.0.CO;2
  7. Morozov, A.N. and Pavlov, V.K., 2012. Korrektsiya Dannykh VMADCP [VMADCP − Data Corrections]. In: Sistemy Kontrolya Okruzhayushchey Sredy [Environmental Control Systems]. Sevastopol: EСOSI-Gidrofizika. Iss. 18, pp. 7-10 (in Russian).
  8. Firing, E. and Gordon, R.L., 1990. Deep Ocean Acoustic Doppler Current Profiling. In: Proc. IEEE 4th Working Conf. on Current Measurements. MD, IEEE, pp. 192-201. doi:10.1109/CURM.1990.110905
  9. Morozov, A.N. and Lemeshko, E.M., 2006. Methodical Aspects of the Application of Acoustic Doppler Current Profilers in the Black Sea. Physical Oceanography, [e-journal] 16(4), pp. 216-233. doi:10.1007/s11110-006-0027-8
  10. Visbeck, M., 2002. Deep Velocity Profiling Using Lowered Acoustic Doppler Current Profilers: Bottom Track and Inverse Solutions. Atmos. Oceanic Techn., [e-journal] 19 (5), pp. 794-807. doi:10.1175/1520-0426(2002)019<0794:DVPULA>2.0.CO;2
  11. Poulain, P.-M., Warn-Varnas, A. and Niiler, P.P., 1996. Near-Surface Circulation of the Nordic Seas as Measured by Lagrangian Drifters. J. Geophys. Res., [e-journal] 101(C8), pp. 18237-18258. doi:10.1029/96JC00506
  12. Furevik, T., 2001. Annual and Interannual Variability of Atlantic Water Temperatures in the Norwegian and Barents Seas: 1980-1996. Deep-Sea Res. I, [e-journal] 48(2), pp. 383-404. https://doi.org/10.1016/S0967-0637(00)00050-9
  13. Cokelet, E.D., Tervalon, N. and Bellingham, J.G., 2008. Hydrography of the West Spitsbergen Current, Svalbard Branch: Autumn 2001. J. Geophys. Res., [e-journal] 113(C1), C01006, 16 p. doi:10.1029/2007JC004150
  14. Tantsyura, A.I., 1973. O Sezonnykh Izmeneniyakh Techeniy Barentseva Morya [On the Seasonal Variations in the Barents Sea Currents]. In: Trudy PINRO [Proceedings of the Polar Research Institute of Marine Fisheries and Oceanography]. Murmansk: PINRO. Iss. 34, pp. 108-112 (in Russian).
  15. Loeng, H., 1991. Features of the Physical Oceanographic Conditions of the Barents Sea. Polar Res., [e-journal] 10(1), pp. 5-18. http://dx.doi.org/10.3402/polar.v10i1.6723
  16. Løyning, T.B., 2001. Hydrography in the North-western Barents Sea, July-August 1996. Polar Res., [e-journal] 20(1), pp. 1-11. http://dx.doi.org/10.3402/polar.v20i1.6495
  17. Skagseth, Ø., 2008. Recirculation of Atlantic Water in the Western Barents Sea. Geophys. Res. Lett., [e-journal] 35(11), L11606. doi:10.1029/2008GL033785
  18. Kushnir, V.M., Hansen, E., Petrenko, L.A., Pavlov, V.K., Morozov, A.N., Stanichnyi, S.V. and Fedorov, S.V., 2007. Currents and Turbulent Diffusion in the Bottom Boundary Layer of the Barents Sea. Physical Oceanography, [e-journal] 17(5), pp. 278-295. doi:10.1007/s11110-007-0022-8
  19. Kushnir, V.M., Hansen, E., Pavlov, V.K. and Morozov, A.N., 2003. Thermochaline Convection in the Edge-Ice Zone in the Barents Sea to the East of Spitsbergen. Physical Oceanography, [e-journal] 13(6), pp. 361-374. doi:10.1023/B:POCE.0000013233.69589.d1
  20. Aleksanin, A.I. and Kim, V., 2016. Sea-Surface Temperature Chart Enhancement in Frontal Zones. Izv. Atmos. Ocean. Phys., [e-journal] 52(9), pp. 1162-1171. doi:10.1134/S0001433816090024
  21. PODAAC. Physical Oceanography Distributed Active Archive Center. [online] Available at: https://podaac.jpl.nasa.gov [Accessed 07 November 2016].
  22. Johannessen, O.M. and Foster, L.A., 1978. A Note on the Topographically Controlled Oceanic Polar Front in the Barents Sea. J. Geophys. Res., [e-journal] 83(C9), pp. 4567-4571. doi:10.1029/JC083iC09p04567
  23. Gawarkiewicz, G. and Plueddemann, A.J., 1995. Topographic Control of Thermohaline Frontal Structure in the Barents Sea Polar Front on the South Flank of Spitsbergen Bank. J. Geophys. Res., [e-journal] 100(C3), pp. 4509-4524. doi:10.1029/94JC02427
  24. Parsons, A.R., Bourke, R.H., Muench, R.D., Chiu, C.-S., Lynch, J.F., Miller, J.H., Plueddemann A.J. and Pawlowicz, R. 1996. The Barents Sea Polar Front in Summer. J. Geophys. Res., [e-journal] 101(C6), pp. 14201-14221. doi:10.1029/96JC00119
  25. Vlasenko, V., Stashchuk, N., Hutter, K. and Sabinin, K., 2003. Nonlinear Internal Waves Forced by Tides near the Critical Latitude. Deep-Sea Res. I, [e-journal] 50(3), pp. 317-338. https://doi.org/10.1016/S0967-0637(03)00018-9
  26. Fer, I., 2006. Scaling Turbulent Dissipation in an Arctic Fjord. Deep-Sea Res. II, [e-journal] 53(1-2), pp. 77-95. doi:10.1016/j.dsr2.2006.01.003
  27. Sundfjord, A., Fer, I., Kasajima, Y. and Svendsen, H., 2007. Observations of Turbulent Mixing and Hydrography in the Marginal Ice Zone of the Barents Sea. J. Geophys. Res., [e-journal] 112(C5), C05008, 23 p. doi:10.1029/2006JC003524
  28. Kowalik, Z. and Proshutinsky, A.Y., 1995. Topographic Enhancement of Tidal Motion in the Western Barents Sea. J. Geophys. Res., [e-journal] 100(С2), pp. 2613-2637. doi:10.1029/94JC02838
  29. Gregg, M.C., Sanford, T.B. and Winkel, D.P., 2003. Reduced Mixing from the Breaking of Internal Waves in Equatorial Waters. Nature, [e-journal] 422, pp. 513-515. doi:10.1038/nature01507
  30. Gregg, M.C., 1989. Scaling Turbulent Dissipation in the Thermocline. J. Geophys. Res., [e-journal] 94(C7), pp. 9686-9698. doi:10.1029/JC094iC07p09686
  31. Cisewski, B., Strass, V.H. and Prandke, H., 2005. Upper-Ocean Vertical Mixing in the Antarctic Polar Front Zone. Deep-Sea Res., [e-journal] 52(9-10), pp. 1087-1108. https://doi.org/10.1016/j.dsr2.2005.01.010
  32. Forryan, A., Martin, A.P., Srokosz, M.A., Popova, E.E., Painter, S.C. and Renner, H.H., 2013. A New Observationally Motivated Richardson Number Based Mixing Parametrization for Oceanic Mesoscale Flow. J. Geophys. Res., 2013, [e-journal] 118(3), pp. 1405-1419. doi:10.1002/jgrc.20108
  33. Morozov, A.N. and Lemeshko, E.M., 2014. Otsenka Vertikal'noy Turbulentnoy Diffuzii po Dannym CTD/LADCP-Izmereniy v Severo-zapadnoy Chasti Chernogo Morya v Mae 2004 Goda [Evaluation of Vertical Turbulent Diffusion from CTD/LADCP Measurements in the Northwestern Part of the Black Sea in May 2004]. Morskoy Gidrofizicheskiy Zhurnal, (1), pp. 58-67 (in Russian).
  34. Padman, L. and Erofeeva, S., 2004. A Barotropic Inverse Tidal Model for the Arctic Ocean. Geophys. Res. Lett., [e-journal] 31(2), L02303. doi:10.1029/2003GL019003
  35. McClimans, T.A. and Nilsen, J.H., 1993. Laboratory Simulation of the Ocean Currents in the Barents Sea. Dyn. Atmos. Oceans, [e-journal] 19(1-4), pp. 3-25. https://doi.org/10.1016/0377-0265(93)90030-B
  36. Maslowski, W., Marble, D., Walczowski, W., Schauer, U., Clement, J.L. and Semtner, A., 2004. On Climatological Mass, Heat, and Salt Transports through the Barents Sea and Fram Strait from a Pan-Arctic Coupled Ice-Ocean Model Simulation. J. Geophys. Res., [e-journal] 109(C3), C03032, 16 p. doi:10.1029/2001JC001039
  37. Pedley, T.J., 1969. On the Stability of Viscous Flow in a Rapidly Rotating Pipe”. J. Fluid Mech., [e-journal] 35(1), pp. 97-115. doi:10.1017/S002211206900098X

Download the article (PDF)