The Experience of Using Autonomous Drifters for Studying the Ice Fields and the Ocean Upper Layer in the Arctic

S.V. Motyzhev, E.G. Lunev, A.P. Tolstosheev

Marine Hydrophysical Institute, Russian Academy of Sciences, Sevastopol, Russian Federation

e-mail: smotyzhev@mail.ru

Abstract

The constructional and operational features of the BTC60/GPS/ice temperature-profiling drifters, developed in Marine Hydrophysical institute RAS for investigation of polar areas, are considered in this article. The drifters operated in completely automatic mode measuring air pressure, water temperatures at 17 depths down to 60 m, ocean pressures at 20, 40 and 60 m nominal depths and current locations. Accuracies of measurements were: +/-2 hPa for air pressure, +/-0.1°C for temperatures, +/-30 hPa for ocean pressure, 60 m for locations. Iridium satellite communication system was used for data transfer. Time delay between sample and delivery to a user did not exceed 10 minutes. More than 30 thermodrifters were developed in the Beaufort Sea – Canada Basin and central Arctic for the period from September 2012 to September 2014. Total duration of drifting buoys in operation was more of 4800 days. It was accepted the data of hourly samples about variability of ice-flows and ice field as a whole movements, thermo processes within upper water layer below ice, air pressure in near surface atmosphere of the Arctic region. The article includes some results of statistical analysis of data from drifter ID247950, the 3-year trajectory of which depended on the processes of transfer and evolution of ice fields in the Beaufort Sea – Canada Basin. Over a long period of time the Arctic buoy in-situ experiments allowed resulting about capability and reasonability to create reliable, technological and low-cost buoy network on basis of BTC60/GPS/ice drifters to monitor Arctic area of the World Ocean.

Keywords

temperature-profiling drifter, ice field, temperature profile, ocean upper layer, Arctic observations

For citation

Motyzhev, S.V., Lunev, E.G. and Tolstosheev, A.P., 2017. The Experience of Using Autonomous Drifters for Studying the Ice Fields and the Ocean Upper Layer in the Arctic. Physical Oceanography, (2), pp. 51-64. doi:10.22449/1573-160X-2017-2-51-64

DOI

10.22449/1573-160X-2017-2-51-64

References

  1. Pisarev, S.V., 2012. Opyt Primeneniya Avtomaticheskikh Dreyfuyushchikh Ustroystv dlya Issledovaniya Vodnoy Tolshchi i Ledovogo Pokrova Arktiki v Nachale XXI v. [Experience of Using Automatic Driſting Devices to Study the Water Column and Ice Cover in the Arctic at the Beginning of XXI Century]. Arktika: Ekologiya i Ekonomika, [e-journal] (4), pp. 66-75. Available at: http://arctica-ac.ru/docs/4(8)/066-075_ARKTIKA_8_2012.pdf [Accessed 5 November 2016] (in Russian).
  2. Polyarnye Stantsii Rossiyskogo Sektora Arktiki [Polar Stations in the Arctic Russian Sector]. [online] Available at: http://geographyofrussia.com/polyarnye-stancii-rossijskogo-sektora-arktiki/ [Accessed 10 October 2016] (in Russian).
  3. Sybrandy, A.L., Niiler, P.P., Martin, C., Scuba, W., Charpentier, E. and Meldrum D.T., 2009. Global Drifter Programme – Barometer Drifter Design Reference. DBCP Technical Document No. 4, WOCE Report No. 134/95, SIO Report No. 95/27, 47 p. Available at: http://www.jcommops.org/doc/DBCP/svpb_design_manual.pdf [Accessed 10 October 2016].
  4. Tolstosheev, A.P., Lunev, E.G. and Motyzhev, S.V., 2014. Analiz Rezul'tatov Naturnykh Eksperimentov s Termoprofiliruyushchimi Dreyfuyushchimi Buyami v Chernom More i Drugikh Rayonakh Mirovogo Okeana [The Analysis of Field Experiment Results with Temperature-Profiling Drifting Buoys in the Black Sea and in Other Regions of the World Ocean]. Morskoy Gidrofizicheskiy Zhurnal, (5), pp. 9-32 (in Russian).
  5. Rakovich, N.N., 2000. Osnovy postroeniya setey MicroLAN [Fundamentals of MicroLAN networks]. Chip News, (6), pp. 14-17. Available at: http://www.chipnews.ru/html.cgi/arhiv/00_06/stat_14.htm [Accessed 1 November 2016] (in Russian).
  6. Merkin, D.R., 1980. Vvedenie v Mekhaniku Gibkoy Niti [Introduction to the Flexible Thread Mechanics]. Moscow: Nauka Publ., 240 p. (in Russian).
  7. UpTempO. Measuring the Upper Layer Temperature of the Polar Oceans. [on-line] Available at: http://psc.apl.washington.edu/UpTempO/UpTempO [Accessed 10 November 2016].
  8. Bayankina, T.M., Litvinenko, S.R., Kryl’, M.V. and Yurkevich N.Yu., 2017. Database of the Operational Drifter Observations in the Arctic Region. Physical Oceanography, [e-journal] (2), pp. 65-74. doi:10.22449/1573-160X-2017-2-65-74
  9. Motyzhev, S.V., Lunev, E.G. and Tolstosheev, A.P., 2016. The Experience of Barometric Drifter Application for Investigating the World Ocean Arctic Region. Physical Oceanography, [e-journal] (4), pp. 47-56. doi:10.22449/1573-160X-2016-4-47-56
  10. Steele, M., Ermold, W. and Zhang, J., 2011. Modeling the Formation and Fate of the Near-surface Temperature Maximum in the Canadian Basin of the Arctic Ocean. J. Geoph. Res., [e-journal] 116(C11), C11015. doi:10.1029/2010JC006803
  11. Alekseev, G.V., Pnyushkov, A.V., Ivanov, N.E., Ashik, I.M., Sokolov, V.T., Golovin, P.N. and Bogorodsky, P.V., 2009. Kompleksnaya Otsenka Klimaticheskikh Izmeneniy v Morskoy Arktike s Ispol'zovaniem Dannykh MPG 2007/08 [Assessment of the Climatic Changes in the Marine Arctic with IPY 2007/08 Data]. Problemy Arktiki i Antarktiki, 1(81), pp. 7-14. Available at: http://www.aari.ru/misc/publicat/paa/PAA-81/PAA81-01%20(7-14).pdf [Accessed 10 November 2016] (in Russian).
  12. Steele, M. and Dickinson, S., 2016. The phenology of Arctic Ocean Surface Warming. J. Geoph. Res., [e-journal] 121(9), pp. 6847-6861. doi:10.1002/2016JC012089
  13. Jackson, J.M., Carmack, E.C., McLaughlin, F.A., Allen, S.E. and Ingram, R.G., 2010. Identification, Characterization, and Change of the Near-Surface Temperature Maximum in the Canada Basin, 1993−2008. J. Geoph. Res., [e-journal] 115(C5), C05021. doi:10.1029/2009JC005265
  14. Iakshina, D.F., Golubeva, E.N., 2016. Issledovanie Mekhanizmov Formirovaniya Podpoverkhnostnogo Maksimuma Temperatury v Kanadskom Basseyne Severnogo Ledovitogo Okeana [The Study of Mechanisms of the Near-Surface Temperature Maximum Formation in the Canada Basin of the Arctic Ocean]. Interekspo Geo-Sibir', [e-journal] 4 (1), Pp. 125-129. Available at: https://elibrary.ru/item.asp?id=26156842 [Accessed 20 November 2016] (In Russian).
  15. Arctic Research Center, 2014. Report on the Workshop “Near-slope observations in the Eurasian and Makarov Basins of the Arctic Ocean”. Arlington, USA: University of Alaska Fairbanks, 27 p. Available at: http://research.iarc.uaf.edu/NABOS2/pubs/Arlington_Workshop_April_2014.pdf [Accessed 14 December 2016].

Download the article (PDF)