Wave Dynamics in the Channels of Variable Cross-Section
E.N. Pelinovsky1, 2, 3, 4, ✉, I.I. Didenkulova1, 4, 5, E.G. Shurgalina1
1 Federal Research Center the Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod, Russian Federation
2 Special Research Bureau for Automation of Marine Researches, Yuzhno-Sakhalinsk, Russian Federation
3 National Research University – Higher School of Economics, Moscow, Russian Federation
4 R.E. Alekseev Nizhniy Novgorod State Technical University, Nizhny Novgorod, Russian Federation
5 Department of Marine Systems, Tallinn University of Technology, Tallinn, Estonia
✉ e-mail: pelinovsky@gmail.com
Abstract
Dynamics of long sea waves in the channels of variable depth and variable rectangular cross-section is discussed within various approximations – from the shallow water equations to those of nonlinear dispersion theory. General approach permitting to find traveling (non-reflective) waves in inhomogeneous channels is demonstrated within the framework of the shallow water linear theory. The appropriate conditions are determined by solving a system of ordinary differential equations. The so-called self-consistent channel in which the width is connected with its depth in a specific way is studied in detail. Within the linear theory of shallow water, a wave does not reflect from the bottom irregularities. The wave shape remains unchanged on the records of the wave gauges (mareographs) fixed along the channel axis, but it varies in space. Nonlinearity and dispersion lead to the wave transformation in such a channel. Within the framework of the shallow water weakly nonlinear theory, the wave shape is described by the Riemann solution, and the wave breaks (gradient catastrophe) quicker in the zones of decreasing depth. The modified Korteweg – de Vries equation describing evolution of a solitary wave of weak but finite amplitude in a self-consistent channel, the depth of which can vary arbitrary, is derived. Some examples of a solitary wave transformation in such a channel are analyzed (particularly, a soliton adiabatic transformation in the channel with the slowly varying parameters, and a solitary wave fission into the group of solitons after it has passed the zone where the depth changes abruptly. The obtained solutions extend the class of those represented earlier by S.F. Dotsenko and his colleagues.
Keywords
traveling long waves, channels of variable cross-section, shallow water equations, Korteweg – de Vries equation
For citation
Pelinovsky, E.N., Didenkulova, I.I. and Shurgalina, E.G., 2017. Wave Dynamics in the Channels of Variable Cross-Section. Physical Oceanography, (3), pp. 19-27. doi:10.22449/1573-160X-2017-3-19-27
DOI
10.22449/1573-160X-2017-3-19-27
References
- Okal, E.A., Fritz, H.M., Synolakis, C.E., Borrero, J.C., Weiss, R., Lynett, P.J., Titov, V.V., Foteinis, S. and Jaffe, B.E. [et al.], 2010. Field Survey of the Samoa Tsunami of 29 September 2009. Seismolog. Res. Lett., [e-journal] 81(4), pp. 577-591. doi:10.1785/gssrl.81.4.577
- Fritz, H.M., Borrero, J.C., Synolakis, C.E., Okal, E.A., Weiss, R., Titov, V.V., Jaffe, B.E., Foteinis, S. and Lynett, P.J. [et al.], 2011. Insights on the 2009 South Pacific Tsunami in Samoa and Tonga from Field Surveys and Numerical Simulations. Earth-Sci. Rev., [e-journal] 107(1-2), pp. 66-75. doi:10.1016/j.earscirev.2011.03.004
- Nosov, M.A., 2011. Zemletryasenie i Tsunami 11 Marta 2011 g. v Yaponii [Earthquake and Tsunami in Japan on March 11, 2011]. RFBR Journal, (2-3), pp. 95-101 (in Russian).
- Ioualalen, M., Pelinovsky, E., Asavanant, J., Lipikorn, R. and Deschamps, A., 2007. On the Weak Impact of the 26 December Indian Ocean Tsunami on the Bangladesh Coast. Nat. Hazards Earth Syst. Sci., [e-journal] 7(1), pp. 141-147. doi:10.5194/nhess-7-141-2007
- Dotsenko, S.F. and Rakova, I.N., 2012. Rasprostranenie Dlinnykh Poverkhnostnykh Voln v Kanalakh Peremennogo Poperechnogo Secheniya [Propagatio of Long Surficial Waves]. Morskoy Gidrofizicheskiy Zhurnal, (2), pp. 3-17 (in Russian).
- Bazykina, A.Yu. and Dotsenko, S.F., 2015. Application of a Channel Model for Describing Propagation of Tsunami-like Single Waves in a Channel with Variable Cross-section. Physical Oceanography, [e-journal] (1), pp. 27-38. doi:10.22449/1573-160X-2015-1-27-38
- Bazykina, A.Yu. and Dotsenko, S.F., 2015. Nonlinear Effects at Propagation of Long Surface Waves in the Channels with a Variable Cross-Section. Physical Oceanography, [e-journal] (4), pp. 3-12. doi:10.22449/1573-160X-2015-4-3-12
- Didenkulova, I., 2013. Tsunami Runup in Narrow Bays: the Case of Samoa 2009 Tsunami. Nat. Hazards., [e-journal] 65(3), pp. 1629-1636. doi:10.1007/s11069-012-0435-7
- Didenkulova, I. and Pelinovsky, E., 2011. Nonlinear Wave Evolution and Runup in an Inclined Channel of a Parabolic Cross-Section. Phys. Fluids, [e-journal] 23(8), 086602. doi:10.1063/1.3623467
- Didenkulova, I. and Pelinovsky, E., 2011. Runup of Tsunami Waves in U-shaped Bays. Pure Appl. Geophys., [e-journal] 168(6), pp. 1239-1249. doi:10.1007/s00024-010-0232-8
- Rybkin, A., Pelinovsky, E.N. and Didenkulova, I., 2014. Nonlinear Wave Run-up in Bays of Arbitrary Cross-Section: Generalization of the Carrier-Greenspan Approach. J. Fluid. Mech., [e-journal] 748, pp. 416-432. doi:10.1017/jfm.2014.197
- Didenkulova, I. and Pelinovsky, E., 2011. Rogue Waves in Nonlinear Hyperbolic Systems (Shallow-Water Framework). Nonlinearity, [e-journal] 24(3), pp. R1-R18. doi.10.1088/0951-7715/24/3/R01
- Didenkulova, I. and Pelinovsky, E., 2009. Non-Dispersive Traveling Waves in Strongly Inhomogeneous Water Channels. Phys. Lett. A., [e-journal] 373(42), pp. 3883-3887. doi:10.1016/j.physleta.2009.08.051
- Shimozono, T., 2016. Long Wave Propagation and Run-Up in Converging Bays. J. Fluid. Mech., [e-journal] 798, pp. 457-484. doi:10.1017/jfm.2016.327
- Harris, M.W., Nicolsky, D.J., Pelinovsky, E.N. and Rybkin, A.V., 2015. Runup of Nonlinear Long Waves in Trapezoidal Bays: 1-D Analytical Theory and 2-D Numerical Computations. Pure Appl. Geophys., [e-journal] 172(3-4), pp. 885-899. doi:10.1007/s00024-014-1016-3
- Harris, M.W., Nicolsky, D.J., Pelinovsky, E.N., Pender, J.M. and Rybkin, A.V., 2016. Run-Up of Nonlinear Long Waves in U-shaped Bays of Finite Length: Analytical Theory and Numerical Computations. J. Ocean Eng. Mar. Energy, [e-journal] 2(2), pp. 113-127. doi:10.1007/s40722-015-0040-4
- Garayshin, V.V., Harris, M.W., Nicolsky, D.J., Pelinovsky, E.N. and Rybkin, A.V., 2016. An Analytical and Numerical Study of Long Wave Run-Up in U-shaped and V-shaped Bays. Appl. Math. Comput., [e-journal] 279, pp. 187-197. doi:10.1016/j.amc.2016.01.005
- Brekhovskikh, L.M., 1973. Volny v Sloistyh Sredakh [Waves in Stratified Media]. Moscow: Nauka, 343 p. (in Russian).
- Didenkulova, I.I., Pelinovsky, D.E., Tyugin, D.Yu., Giniyatullin, A.R and Pelinovsky, E.N., 2012. Begushchie Dlinnye Volny v Vodnykh Pryamougol'nykh Kanalakh Peremennogo Secheniya [Travelling Long Waves in Water Rectangular Channels of Variable Cross-Section]. MRSU Magazine. Series “Natural Science”, [e-journal] (5), pp. 89-93. Available at: http://vestnik-mgou.ru/Articles/Doc/427 [Accessed 30 December 2016] (in Russian).
- Bagaev, A.V. and Pelinovskiy, E.N., 2016. Konfiguratsiya Kanala Peremennogo Secheniya, Dopuskayushchaya Bezotrazhatel'noe Rasprostranenie Vnutrennikh Voln v Okeane [Configuration of Variable Cross-Section Channel Allowing Non-Reflective Propagation of Internal Waves in the Ocean]. MVMS Journal, 18(3), pp.127-136 (in Russian).
- Didenkulova, I. and Pelinovsky, E., 2016. On Shallow Water Rogue Wave Formation in Strongly Inhomogeneous Channels. J. Phys. A. Math. Theor., [e-journal] 49(19), 194001. doi:10.1088/1751-8113/49/19/194001
- Pelinovsky, E.N., 1996. Gidrodinamika Voln Tsunami [Hydrodynamics of Tsunami Waves]. Nizhniy Novgorod: IPF RAN, 276 p. (in Russian).
- Nakoulima, O., Zahibo, N., Pelinovsky, E. and Kurkin, A., 2005. Solitary Wave Dynamics in Shallow Water above Periodic Topography. Chaos, [e-journal] 15(3), 037107. doi.10.1063/1.1984492