Calculation and Analysis of Water Circulation Energetics in the Black Sea Coastal Regions

S.G. Demyshev, O.A. Dymova

Marine Hydrophysical Institute, Russian Academy of Sciences, Sevastopol, Russian Federation

e-mail: olgadym@yahoo.com

Abstract

The paper presents the analysis results of the kinetic and potential energy budget components calculated using eddy-resolving model of Marine Hydrophysical Institute. Numerical experiments were carried out with 1.6 km spatial resolution allowing for real atmospheric forcing in 2006. Temporal-spatial variability of terms in energy budget equations was considered for the annual-averaged and seasonal-averaged time scales in the certain sea regions. The analysis of the maps of vertically-averaged energetic components showed that, on average, over 2006 the most intensive energy exchange occurred along the western coast, in the southeast, near the Crimean and Anatolian coasts and in the RIM Current zone. It is revealed that the most energy-significant budget components are the buoyancy force in the northern and northeastern parts of the Black Sea, the wind force in its southern part, and the pressure and friction forces above the continental slope in the RIM Current zone. It was determined that the structure of currents in the northwestern shelf region in the cold period was determined by wind fields. In the warm period the generation of intensive eddies was observed due to an increase of available potential energy store. Formation of mesoscale eddies near the Crimean and the North Caucasus coasts occurred mainly in the spring-summer season as result of baroclinic instability. The basic factor conditioning mesoscale dynamics along the southern and the southeastern Black Sea coast in all the seasons and at a weak wind is the influence of the coastal obstacles upon the RIM Current periphery. The RIM Current region was the energy sink zone due to intensive horizontal dissipative and diffusion processes.

Keywords

the Black Sea, numerical modeling, kinetic energy, potential energy, mesoscale eddies

For citation

Demyshev, S.G. and Dymova, O.A., 2017. Calculation and Analysis of Water Circulation Energetics in the Black Sea Coastal Regions. Physical Oceanography, (3), pp. 45-57. doi:10.22449/1573-160X-2017-3-45-57

DOI

10.22449/1573-160X-2017-3-45-57

References

  1. Thomas, L.N., Tandon, A. and Mahadevan, A., 2008. Submesoscale Processes and Dynamics In: W.H Matthew and H. Hiroyasu, eds., 2013. Ocean Modeling in an Eddying Regime. Washington, D.C.: American Geophysical Union, pp. 17-38. doi:10.1029/177GM04
  2. Karimova, S., 2012. Spiral Eddies in the Baltic, Black and Caspian Seas as Seen by Satellite Radar Data. Advances in Space Research, [e-journal] 50(8), pp. 1107-1124. doi:10.1016/j.asr.2011.10.027
  3. Zatsepin, A.G., Baranov, V.I., Kondrashov, A.A., Korzh, A.O., Kremenetskiy, V.V., Ostrovkii, A.G. and Soloviev, D.M., 2011. Submesoscale Eddies at the Cauasus Black Sea Shelf and the Mechanisms of Their Generation. Oceanology, [e-journal] 51(4), pp. 554-567. doi:10.1134/S0001437011040205
  4. Demyshev, S., Knysh, V., Korotaev, G., Kubryakov, A. and Mizyuk, A., 2010. The MyOcean Black Sea from a Scientific Point of View. Mercator Ocean Quarterly Newsletter, 39, pp. 16-24.
  5. Dotsenko, S.F. and Ivanov, V.A., 2010. Prirodnye Katastrofy Azovo-Chernomorskogo Regiona [The Azov-Black Sea Region Nature Catastrophes]. [e-book] Sevastopol: ECOSI-Gidrofizika, 174 p. Available at: http://meteo.geofaq.ru/books/612759_D9-E3D_docenko_s_f_ivanov_v_a_prirodnye_katastrofy_azovo_chernomors.pdf [Accessed 20 August 2016] (in Russian).
  6. Zalesny, V.B., Gusev, A.V. and Moshonkin, S.N., 2013. Numerical Model of the Hydrodynamics of the Black Sea and the Sea of Azov with Variational Initialization of Temperature and Salinity. Izvestiya. Atmospheric and Ocean Physics, [e-journal] 49(6), pp. 642-658. doi:10.1134/S0001433813060133
  7. Ibraev, R.A., 2001. A Study of the Sensitivity of the Model of the Black Sea Current Dynamics to the Surface Boundary Conditions. Oceanology, 5(41), pp. 615-621.
  8. Kubryakov, A.I., 2004. Primenenie Tekhnologii Vlozhennykh Setok pri Sozdanii Sistemy Monitoringa Gidrofizicheskikh Poley v Pribrezhnykh Rayonakh Chernogo Morya [Application of Nested Grid Technology When Creating Hidrophysical Field Monitoring System in the Black Sea Coastal Areas]. In: V. A. Ivanov ed., 2004. Ekologicheskaya Bezopasnost' Pribrezhnoy i Shel'fovoy Zon i Kompleksnoe Ispol'zovanie Resursov Shel'fa [Ecological Safety of Coastal and Shelf Zones and Complex Use of Shelf Resources]. Sevastopol: ECOSI-Gidrofizika. Iss. 11, pp. 31-50 (in Russian).
  9. Mizyuk, A.I., Korotaev, G.K. and Ratner, Yu.B., 2014. Adaptatsiya Modeli NEMO dlya Vypolneniya Prognozov v Chernom More [NEMO Model Adaptation for Forecasting in the Black Sea]. In: Sovremennoe Sostoyanie i Perspektivy Narashchivaniya Morskogo Resursnogo Potentsiala Yuga Rossii [Current State and Prospects of Increasing the Marine Resource Potential of the South of Russian Federation]. Sevastopol, 15-18 September 2014. Sevastopol: ECOSI-Gidrofizika, pp. 181-184 (in Russian).
  10. Demyshev, S.G., 2012. A Numerical Model of Online Forecasting Black Sea Currents Izvestiya. Atmospheric and Ocean Physics, 48(1), pp. 120-132. doi:10.1134/S0001433812010021
  11. Sarkisyan, A.S., 1996. On Some Problems and Results of Ocean Modeling. Oceanology, 36(5), pp. 607-617.
  12. Zalesny, V.B. and Ivchenko, V.O., 2010. Modeling the Global Circulation Response and the Regional Response of the Arctic Ocean to the External Forcing Anomalies. Oceanology, 50(6), pp. 829-840. doi:10.1134/S0001437010060020
  13. Aiki, H., Zhai, X. and Greatbatch, R.J., 2016. Energetics of the Global Ocean: the Role of Mesoscale Eddies. In: The Indo-Pacific Climate Variability and Predictability. Vol. 7, ch. 4, pp. 109-134.
  14. Cessi, P., Pinardi, N. and Lyubartsev, V., 2014. Energetics of Semienclosed Basins with Two-Layer Flows at the Strait. Journal of Physical Oceanography, [e-journal] 44(3), pp. 967-979. doi:10.1175/JPO-D-13-0129.1
  15. Demyshev, S.G., 2004. Energy of the Black Sea Climatic Circulation. 1. Discrete Equations of the Time Rate of Change of Kinetic and Potential Energy. Meteorologiya i Gidrologiya, (9), pp. 65-80.
  16. Demyshev, S.G. and Dymova, O.A., 2016. Analyzing Intraannual Variations in the Energy Characteristics of Circulation in the Black Sea. Izvestiya. Atmospheric and Ocean Physics, [e-journal] 52(4), pp. 386-393. doi:10.1134/S0001433816040046
  17. Mellor, G.L. and Yamada, T., 1982. Development of a Turbulence Closure Model for Geophysical Fluid Problems. Rev. Geophys. Space Phys., [e-journal] 20(4), pp. 851-875. doi:10.1029/RG020i004p00851
  18. Farda, A., Déué, M., Somot, S. Horányi, A., Spiridonov, V. and Toth, H., 2010. Model ALADIN as Regional Climate Model for Central and Eastern Europe. Studia Geophysica et Geodaetica, [e-journal] 54(2), pp. 313-332. doi:10.1007/s11200-010-0017-7
  19. Altman, E.N. and Simonov, A.I. eds, 1991. Gidrometeorologiya i Gidrokhimiya Morey SSSR. T. IV. Chernoe more. Vyp. 1. Gidrometeorologicheskie usloviya [Hydrometeorology and Hydrochemistry of the USSR seas. Vol. IV. The Black Sea. Iss. 1. Hydrometeorologic Conditions]. Saint Petersburg: Gidrometeoizdat, 428 p. (in Russian).
  20. Robinson, A.R, Harrison, D.E., Mintz, Y. and Semtner, A.J., 1977. Eddies and the General Circulation of an Idealized Oceanic Gyre: a Wind and Thermally Driven Primitive Equation Numerical Experiment. Journal of Physical Oceanography, [e-journal] 7(2), pp. 182-207. doi:10.1175/1520-0485(1977)007<0182:EATGCO>2.0.CO;2
  21. Zatsepin, A.G., Kremenetskiy, V.V., Stanichny, S.V. and Burdyugov, V.M., 2010. Basseynovaya Tsirkulyatsiya i Mezomasshtabnaya Dinamika Chernogo Morya pod Vetrovym Vozdeystviem [The Black Sea Basin-Scale Circulation and Mesoscale Dynamics under Wind Forcing]. In: Sovremennye Problemy Dinamiki Okeana i Atmosfery [Contemporary Problems of the Ocean and the Atmosphere Dynamics]. Moscow: TRIADA LTD, pp. 347-368 (in Russian).
  22. Stanev, E. and Rachev, N., 1999. Numerical Study on the Planetary Rossby Modes in the Black Sea. Journal of Marine Systems, [e-journal] 21(1-4), pp. 283-306. http://dx.doi.org/10.1016/S0924-7963(99)00019-6
  23. Korotaev, G.K., Kosnyrev, V.K. and Kuftarkov, Yu.M., 1977. O Dostupnoy Potentsial'noy Energii i Generatsii Mezomasshtabnykh Vikhrey v Okeane [On Available Potential Energy and Generation of Mesoscale Eddies in the Ocean]. Morskie Gidrofizicheskie Issledovaniya, 79(4), pp. 200-212 (in Russian).
  24. Vol'tsinger, N.E. and Pyaskovskiy, R.V., 1968. Osnovnye Okeanologicheskie Zadachi Teorii Melkoy Vody [Basic Oceanographic Problems of Shallow Water Theory]. Saint Petersburg: Gidrometeoizdat, 300 p. (in Russian).
  25. Elkin, D.N. and Zatsepin, A.G., 2013. Laboratory Investigation of the Mechanism of the Periodic Eddy Formation Behind Capes in a Coastal Sea. Oceanology, [e-journal] 53(1), pp. 24-35. doi:10.1134/S0001437012050062

Download the article (PDF)