Doppler HF Radar Application for the Study of Spatial Structure of Currents in the Black Sea

V.V. Gorbatskiy1, K.D. Sabinin2, V.A. Telegin3, A.G. Zatsepin4, ✉, S.B. Kuklev5

1 Krylov State Research Centre, Saint-Petersburg, Russian Federation

2 N.N. Andreev Acoustic Institute, Moscow, Russian Federation

3 N.V. Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation, Russian Academy of Sciences, Moscow, Russian Federation

4 P.P. Shirshov Institute of Oceanology, Russian Academy of Sciences, Moscow, Russian Federation

5 Southern Department of the P.P. Shirshov Institute of Oceanology, Russian Academy of Sciences, Gelendshik, Russian Federation

e-mail: zatsepin@ocean.ru

Abstract

The results of the surface current spatial structure observations performed by SeaSonde Doppler HF radar (operating frequency is 25 MHz) in the Black Sea region adjacent to the city of Gelendzhik are represented. The observations imply a special technique consisting in successive measurements at two selected points of the coastline. Initially, the measurements are carried out in the first of two selected coastal points during two hours. Then the radar system is transferred to the second point on the coast where the procedure is repeated. At that the velocity field is assumed to remain unchanged during the total measurement period (including the time of the radar displacement) from both points. The measurement results are shown in a form of a spatial map of the current velocity vectors in the research region (with 20 × 20 km dimensions). Some features of the current spatial and temporal variability in the coastal waters are revealed. Particularly, the eddy-like formations (the diameter is a few kilometers) which rapidly move and collapse. Since similar eddies are detected using the contact measurement methods, complex and variable structure of the surface currents measured by a radar does not seem to be an artifact. Nevertheless, reliability of the data resulted from the radar measurements of the surface current velocity field should be verified in future by comparing it with the results of the quasi-synchronous velocity field measurements performed by stationary, drifting and towed velocity meters.

Keywords

the Black Sea, coastal zone, Doppler HF radar, two-point measurement range, correlation radius, antenna, surface currents, eddy structures

For citation

Gorbatskiy, V.V., Sabinin, K.D., Telegin, V.A., Zatsepin, A.G. and Kuklev, S.B., 2017. Doppler HF Radar Application for the Study of Spatial Structure of Currents in the Black Sea. Physical Oceanography, (3), pp. 58-68. doi:10.22449/1573-160X-2017-3-58-68

DOI

10.22449/1573-160X-2017-3-58-68

References

  1. Barrick, D.E., Evans, M.W. and Weber, B.L., 1977. Ocean Surface Currents Mapped by Radar. Science, [e-journal] 198 (4313), pp. 138-144. doi:10.1126/science.198.4313.138
  2. Codar Ocean Sensors. 2016. SeaSonde Remote Unit Specifications and Configuration Options. [online] Available at: http://www.codar.com/SeaSonde.shtml. [Accessed 10 May 2016].
  3. Information of HR-Radar. 2016. University of Hamburg HR-Radar Home Page. [online] Available at: http://ifmaxp1.ifm.uni-hamburg.de [Accessed: 10 May 2016].
  4. Lynch, D.R., Holboke, M.J. and Naimie, C.E., 1997. The Maine Coastal Current: Spring Climatological Circulation. Con. Shelf Res., [e-journal] 17(6), pp. 605-634. doi:10.1016/S0278-4343(96)00055-6
  5. Garbatsevitch, V.A., Telegin, V.А., Lapshin, V.S., Shaboldin, N.А., Ivanov, I.I. and Ivonin, D.V., 2011. Malogabaritnaya Mnogochastotnaya RLS Dekametrovogo Diapazona dlya Monitoringa Okeana i Ionosfery. Kontseptsii Razrabotki I Pervye Rezul'taty [Compact Multifrequency HF Radar for Ocean and Ionosphere Monitoring. Conception and First Tests]. Sovremennye Problemy Distantsionnogo Zondirovaniya Zemli iz Kosmosa, [e-journal] 8(4), pp. 100-106. Available at: http://d33.infospace.ru/d33_conf/2011v8n4/100-106.pdf [Accessed 9 May 2016] (in Russian).
  6. Garbatsevich, V.A., Lapshin, V.S., Telegin, V.A., Buzinsky, N.L., Shaboldin, N.A., Maksimova, N.S., Ivanov, I.I. and Ivonin, D.V., 2012. RLS Dekametrovogo Diapazona, Prednaznachennaya dlya Radiolokatsionnogo Monitoringa Prirodnykh Sred [Radar of Decametric Band Designed for Radar Monitoring of Natural Environments]. Special Equipment, (3), pp. 30-34 (in Russian).
  7. Gorbatskiy, V.V., Babakov, A.N. and Gurova, E.A., 2008. Izmerenie Parametrov Pribrezhnykh Morskikh Techeniy Doplerovskim Radiolokatorom CODAR Seasonde [Measuring the Parameters of Coastal Marine Currents with CODAR SeaSonde Doppler Radar]. In: Trudy XXV Vserossiyskogo Simposiuma “Radiolokatsionnye Issledovaniya Prirodnykh Sred” [Proc. 25th All-Russia Symposium “Environment Radar Research]. Saint Petersburg, pp. 198-206 (in Russian).
  8. Gorbatskiy, V.V., Gudoshnikov, Yu.P. and Nesterov, A.V., 2011. Izmereniya Techeniy na Morskoy Poverkhnosti Doplerovskim Radarom, Ustanovlennym na Sudne [Measurements of Currents on the Sea Surface by a Doppler Radar Mounted on a Ship]. In: Sbornik Trudov XXVII Vserossiiskogo Simposiuma “Radiolokatsionnoe Issledovanie Prirodnykh Sred” [Proc. 27th All-Russian Symposium “Environment Radar Research]. Saint Petersburg: A.F. Mozhayskiy VKA, pp. 111-115 (in Russian).
  9. Baranov, V.I., Gorbatskiy, V.V., Dudko, D.I., Zatsepin, A.G., Krayushkin, E.V., Kuklev, S.B., Kukleva, O.N., Lavrova, O.Yu., Myslenkov, S.A. and Nazirova, K.R., 2015. Novyy Podkhod k Issledovaniyu Submezomasshtabnoy Dinamiki Vod Chernomorskogo Shel'fa Distantsionnymi i Kontaktnymi Metodami [A New Approach to the Study of Sub-Mesoscale Dynamics of the Black Sea Shelf Waters by Remote and Contact Methods]. In: XXIII Vserossiiskaya Otkrytaya Konferentsiya “Sovremennye Problemy Distantsionnogo Zondirovaniya Zemli iz Kosmosa” [Proc. 23th All-Russian Open Conference “Actual Problems in Remote Sensing of the Earth from Space”]. Moscow: Space Research Institute, pp. 236. Available at: http://smiswww.iki.rssi.ru/d33_conf/thesisshow.aspx?page=109 [Accessed 9 May 2016] (in Russian).
  10. Zatsepin, A.G., Kremenetskii, V.V., Ostrovskii, A.G., Poyarkov, S.G., Korzh, A.O. and Solov’ev, D.M., 2008. Studies of the Hydrophysical Processes over the Shelf and Upper Part of the Continental Slope of the Black Sea with the Use of Traditional and New Observation Techniques. Oceanology, [e-journal] 48(4), pp. 466-475. doi:10.1134/S0001437008040024
  11. Zatsepin, A.G., Ostrovskii, A.G., Kremenetskiy, V.V., Nizov, S.S., Piotukh, V.B., Solov’ev V.A., Shvoev, D.A., Tsibulsky, A.L., Kuklev, S.B., Kukleva, O.N., Moskalenko, L.V., Podymov, O.I., Baranov, V.I., Kondrashov, A.A., Korzh, A.O., Kubryakov, A.A., Solov’ev, D.M. and Stanichny, S.V., 2014. Subsatellite Polygon for Studying Hydrophysical Processes in the Black Sea Shelf-Slope Zone. Izvestiya. Atmospheric and Oceanic Physics, [e-journal] 50(1), pp. 13-25. doi:10.1134/S0001433813060157

Download the article (PDF)