The Geo-Information System Application for Display of the Tsunami Type Long Wave Propagation Modeling Results in the Black Sea Coastal Area

A.Yu. Basykina, E.V. Zhuk, A.Kh. Khaliulin

Marine Hydrophysical Institute, Russian Academy of Sciences, Sevastopol, Russian Federation

e-mail: aleksa.44.33@gmail.com

Abstract

Study of the tsunami wave propagation in the coastal zone is an important practical task in the field of oceanology. Although tsunami in the Black Sea is a rare phenomenon, however, the level of seismic activity in the region does not permit to exclude generation of strong tsunami waves due to the underwater earthquakes. The computation experiments make it possible to analyze the features of the tsunami type wave transformation and to determine the sea level changes in the coastal zone. The geo-information system is shown to be is applied to visualize the tsunami type long wave propagation modeling results in the Black Sea coastal area. Within the framework of the nonlinear long wave theory, the Propagation of Surface Long Tsunami Type Waves in the Black Sea Coastal Zone software model is developed. It is integrated into the Black Sea geo-information system. The software module providing data exchange between the geo-information system and the model is developed. It permits to analyze the wave field transformation features and to quantify the wave amplitude characteristics when they propagate towards different sections of the Black Sea coast.

The results of the software module operation are represented based on the example of the Feodosiya Gulf. The instantaneous fields of sea level displacements in the gulf and the horizontal velocity fields are constructed. The values of the sea level maximum elevation and sink in the basin are calculated. The mareograms in the specified zones which allow the assessment of tsunami risk for the Feodosiya Gulf coast are also constructed.

Keywords

geo-information system, tsunami type waves, nonlinear long wave propagation, waves in gulfs and bays, tsunami risk for the Black Sea coast

For citation

Basykina, A.Yu., Zhuk, E.V. and Khaliulin, A.Kh., 2017. The Geo-Information System Application for Display of the Tsunami Type Long Wave Propagation Modeling Results in the Black Sea Coastal Area. Physical Oceanography, (3), pp. 69-76. doi:10.22449/1573-160X-2017-3-69-76

DOI

10.22449/1573-160X-2017-3-69-76

References

  1. Kononkova, G.E. and Pokazeev, K.V., 1985. Dinamika Morskikh Voln [Dynamics of Sea Waves]. Mosсow: MGU Publ., 298 p. (in Russian).
  2. Nikonov, A.A., 1997. Tsunami na Beregakh Chernogo i Azovskogo Morey [Tsunami on the Shores of the Black and Azov Seas]. Izvestiya. Physics of the Solid Earth, 33(100), pp. 86-96 (in Russian).
  3. Solov'eva, O.N., Dotsenko, S.F., Kuzin, I.P. and Levin, B.V., 2004. Tsunami in the Black Sea: Historical Events, Seismic Sources, and Features of Propagation. Oceanology, 44(5), pp. 638-643.
  4. Dotsenko, S.F. and Ivanov, V.A., 2010. Prirodnye Katastrofy Azovo-Chernomorskogo Regiona [The Azov-Black Sea Region Nature Catastrophes]. Sevastopol: ECOSI-Gidrofizika, 174 p. (in Russian).
  5. Dotsenko, S.F. and Ingerov, A.V., 2010. Numerical Analysis of the Propagation and Amplification of Tsunami Waves on the Northwest Shelf of the Black Sea. Physical Oceanography, [e-journal] 20(5), pp. 325-334. doi:10.1007/s11110-011-9088-4
  6. Dotsenko, S.F. and Ingerov, A.V., 2010. Numerical Modeling of the Propagation and Strengthening of Tsunami Waves near the Crimean Peninsula and the Northeast Coast of the Black Sea. Physical Oceanography, [e-journal] 20(1), pp. 1-13. doi:10.1007/s11110-010-9063-5
  7. Dotsenko, S.F. and Ingerov, A.V., 2013. Kharakteristika Voln Tsunami Seysmicheskogo Proiskhozhdeniya v Basseyne Chernogo Morya po Rezul'tatam Chislennogo Modelirovaniya [Characteristics of Tsunami Waves of Seismic Origin in the Black Sea Basin according to Numerical Simulation Results]. Morskoy Gidrofizicheskiy Zhurnal, (3), pp. 25-34 (in Russian).
  8. Bazykina, A.Yu. and Dotsenko, S.F., 2016. Propagation of Tsunami-Like Surface Long Waves in the Bays of a Variable Depth. Physical Oceanography, [e-journal] (4), pp. 3-12. doi:10.22449/1573-160X-2016-4-3-11
  9. Bazykina, A.Yu., Dotsenko, S.F. and Ingerov, A.V., 2016. Osobennosti Rasprostraneniya Voln Tipa Tsunami v Pribrezhnoy Zone Chernogo Morya [Features of Tsunami Wave Propagation in the Black Sea Coastal Zone]. In: Tezisy Dokladov Nauchnoy Konferentsii “Mirovoy Okean: Modeli, Dannye i Operativnaya Okeanologiya” [Summaries of the Scientific Conference “World Ocean: Models, Data and Operational Oceanography”. 26-30 September 2016, Sevastopol]. Sevastopol: FGBUN MGI, pp. 47-48 (in Russian).
  10. Belokopytov, V.N., Khaliulin, A.Kh., Godin, E.A, Konovalov, S.K., Dotsenko, S.F., Ingerov, A.V., Sergeeva, A.V. and Gorbunov, V.P., 2012. Programmnoe Obespechenie Dlya Morskikh Ekologicheskikh Issledovaniy [Software for Marine Environmental Research]. In: MHI, 2012. Ustoychivost' i Evolyutsiya Okeanologicheskikh Kharakteristik Ekosistemy Chernogo Morya [Stability and Evolution of the Oceanological Characteristics of the Black Sea Ecosystem]. Sevastopol: ECOSI-Gidrofizika, pp. 32-42 (in Russian).
  11. Wijesundara, W.A.A.P., 2014. GIS Based Tsunami Risk Assessment in Weligma, Sri Lanka. Universal J. Geosci., [e-journal] 2(8), pp. 242-250. doi:10.13189/ujg.2014.020802
  12. Mathur Dhruvesh, K. and Udani Praful., M., 2015. Tsunami Detection and Assessment Using Remote Sensing and GIS. Int. J. Eng. Res. Gen. Sci., [e-journal] 3(6), pp. 810-817. Available at: http://oaji.net/articles/2015/786-1451214155.pdf [Accessed 15 December 2016].
  13. Zhuk, E.V., Godin, E.A., Ingerov, A.V. and Khaliulin, A.Kh., 2016. Opyt Razrabotki GIS Chernogo Morya na Osnove Besplatnogo Programmnogo Obespecheniya [Experience in Developing the Black Sea GIS on the Basis of Open Software]. Geoprofi, (2), pp. 36-40 (in Russian).
  14. Zhuk, E., Khaliulin, A., Zodiatis, G., Nikolaidis, A. and Isaeva, E., 2016. Black Sea GIS developed in MHI. In: Proc. SPIE 9688. Fourth Intern. Conf. on Remote Sensing and Geoinform. of the Environment (RSCy2016). August 12, 2016. Paphos, Cyprus, 2016. 96881C. doi:10.1117/12.2241631
  15. MapServer. 2017. Open Source Web Mapping. [online] Available at: http://mapserver.org. [Accessed 6 January 2017].

Download the article (PDF)