Tsunami Hazard Assessment of the Black Sea Coast in the Regions of the Planned Coming Out of the Russia–Turkey Gas Pipelines

L.I. Lobkovsky1, R.Kh. Mazova2, ✉, I.V. Remizov2

1 P.P. Shirshov Institute of Oceanology, RAS, Moscow, Russian Federation

2 R.E. Alekseev Nizhny Novgorod State Technical University, Nizhny Novgorod, Russian Federation

e-mail: raissamazova@yandex.ru

Abstract

The results of numerical simulation of tsunami waves in the Black Sea basin are represented for assessing possible tsunami hazards for the coastal zone in the points where the planned underwater parts of the Russia–Turkey gas pipelines (“Turkish Stream” and “Blue Stream – 2”) enter the sea and come out to the coast. Numerical simulation of the tsunami source generation and tsunami wave propagation in the Black Sea is carried out in two scenarios for 7 seismic sources. To assess potential tsunami hazard, each of the performed calculations implies modeling of the seismic sources in the basin regions (with due regard to the character of their geodynamic faults and structures) where the pipelines can possibly come out to the coast. Synthetic tide gauges along the coastline are used to analyze the results of the calculations. The simulation is done within the framework of the earthquake key-board model which takes into account the zones of active faults. For each model, the characteristics of the wave fields and the direction of the most intense propagation of the wave fronts are obtained and analyzed at the selected time points. The tsunami wave maximum heights are estimated for the places where the gas pipelines come out to the coast and enter the sea both on the Russian and Turkish coasts. It is shown that at moderate earthquakes, hazard of tsunami wave impact upon laying the gas pipelines along the considered directions is insignificant. At the same time, at stronger earthquakes, the danger of the coastal infrastructure destruction is real. Thus, the drawn conclusion implies strong necessity in the detailed tsunami zonation of the coast and marking out the local sections where the planned gas pipelines enter the sea and come out to the coast.

Keywords

tsunami, seismic and tsunami hazard, tsunamigenic earthquakes, tsunami waves, numerical simulation, the Black Sea coast

For citation

Lobkovsky, L.I., Mazova, R.Kh. and Remizov, I.V., 2017. Tsunami Hazard Assessment of the Black Sea Coast in the Regions of the Planned Coming Out of the Russia–Turkey Gas Pipelines. Physical Oceanography, (3), pp. 77-90. doi:10.22449/1573-160X-2017-3-77-90

DOI

10.22449/1573-160X-2017-3-77-90

References

  1. Dotsenko, S.F., 1994. Chernomorskie Tsunami [The Black Sea Tsunami]. Izvestiya. Atmospheric and Oceanic Physics, 30(4), pp. 513-519 (in Russian).
  2. Solov'eva, O.N., Dotsenko, S.F., Kuzin, I.P. and Levin, B.V., 2004. Tsunami v Chernom More: Istoricheskie Sobytiya, Seysmicheskie Istochniki i Zakonomernosti Rasprostraneniya [Tsunami in the Black Sea: Historical Events, Seismic Sources and Propagation Patterns]. Oceanology, 44(5), pp. 679-685 (in Russian).
  3. Dotsenko, S.F., Sergeevskiy, B.Yu. and Cherkesov, L.V., 1987. Generatsiya Prostranstvennykh Voln Tsunami Podvizhkami dna Konechnoy Prodolzhitel'nosti [Generation of Tsunami Spatial Waves by Finite Duration Bottom Movements]. In: Issledovaniya Tsunami № 2 [Study of Tsunami No. 2]. Moscow: Nauka, pp. 27-34 (in Russian).
  4. Dotsenko, S.F. and Sergeevskiy, B.Yu., 1993. Dispersionnye Effekty pri Generatsii i Rasprostranenii Napravlennoy Volny Tsunami [Dispersive Effects in the Generation and Propagation of a Directional Tsunami Wave]. In: Issledovaniya Tsunami № 5 [Study of Tsunami No. 5]. Moscow: MGFK RAN, pp. 21-32 (in Russian).
  5. Dotsenko, S.F. and Solov'ev, S.L., 1995. O Roli Ostatochnykh Smeshcheniy Dna Okeana v Generatsii Tsunami Podvodnymi Zemletryaseniyami [On the Role of Residual Displacements of the Ocean Bottom in the Tsunami Generation by Underwater Earthquakes]. Oceanology, 35(1), pp. 25-31 (in Russian).
  6. Dotsenko, S.F. and Konovalov, A.V., 1996. Tsunami Waves in the Black Sea in 1927: Observations and Numerical Modelling. Physical Oceanography, [e-journal] 7(6), pp. 389-401. doi:10.1007/BF02509653
  7. Dotsenko, S.F. and Konovalov, A.V., 1996. Numerical Modelling of Tsunami Propagation in the Open Black Sea. Physical Oceanography, [e-journal] 7(1), pp. 65-77. doi:10.1007/BF02509826
  8. Dotsenko, S.F., 1996. Radiation of Long Waves from Black Sea Seismic Zones. Physical Oceanography, [e-journal] 7(5), pp. 315-320. doi:10.1007/BF02509868
  9. Dotsenko, S.F., 2000. Relationship between the Intensity of Tsunami and the Location of the Epicentre of Underwater Earthquakes near the Continental Slope of the South Coast of Crimea. Physical Oceanography, [e-journal] 11(2), pp. 109-115. doi:10.1007/BF02515298
  10. Dotsenko, S.F., 2005. Evaluation of the Parameters of Tsunami Waves along the South Coast of the Crimean Peninsula. Physical Oceanography, [e-journal] 15 (3), pp. 133-141. doi:10.1007/s11110-005-0036-z
  11. Dotsenko, S.F., 2005. Specific Features of the Propagation of Tsunamis in the Northwest Part of the Black Sea. Physical Oceanography, [e-journal] 15(6), pp. 363-369. doi:10.1007/s11110-006-0009-x
  12. Dotsenko, S.F. and Ingerov, A.V., 2007. Characteristics of Tsunami Waves in the Black Sea according to the Data of Measurements. Physical Oceanography, [e-journal] 17(1), pp. 17-28. doi:10.1007/s11110-007-0002-z
  13. Solov'eva, O.N., Dotsenko, S.F., Kuzin, I.P. and Levin, B.V., 2004. Tsunami in the Black Sea: Historical Events, Seismic Sources and Features of Propagation. Oceanology, 44(5), pp. 638-643.
  14. Solov'eva, O.N. and Kuzin, I.P., 2005. Seismicity and Tsunamis in the Northeastern Part of the Black Sea. Oceanology, 45(6), pp. 791-794.
  15. Grigorash, Z.K. and Korneva, L.A., 1972. Mareograficheskie Dannye o Tsunami v Chernom More pri Turetskom Zemletryasenii v Dekabre 1939 goda [Mareographic Data on the Tsunami in the Black Sea during the Turkish Earthquake in December 1939]. Oceanology, 12(3), pp. 417-422 (in Russian).
  16. Kaz'min, V.G., Lobkovskii, L.I. and Pustovitenko, B.G., 2004. Present-Day Microplate Kinematics in the Black Sea-South Caspian Region. Oceanology, 44(4), pp. 564-573.
  17. Chebanenko, I.I., Gozhik, P.F., Evdoshchuk, N.I. and Klochko, V.P., 2003. Skhema Glubinnykh Razlomov na Uchastkakh Krymskogo i Kavkazskogo Poberezhiy Chernogo Morya [Scheme of Deep Faults on the Crimean and Caucasian Black Sea Coast Sections]. Ecologichnyi Zhurnal, [e-journal] (1), pp. 54-58. Available at: http://ashipunov.info/jurassic/j/crimea/06/Chebanenko.et.al.2003.pdf [Accessed 20 May 2016] (in Russian).
  18. Garagash, I.A. and Lobkovskii, L.I., 2000. Geomekhanicheskaya Otsenka Opolznevykh Protsessov i Ikh Monitoring na Sklonakh Chernogo Morya v Svyazi s Realizatsiey Proekta “Goluboy Potok” [Geomechanical Assessment of Landslide Processes and their Monitoring on the Slopes of the Black Sea in Connection with the Implementation of the Blue Stream Project]. In: Materialy VI Mezhdunarodnoj Nauchno-Tekhnicheskoj Konferencii "Sovremennye Metody i Sredstva Okeanologicheskikh Issledovaniy" [Proc. 6th International Scientific-Technical Conference “Modern Methods and Means of Oceanological Research”]. Moscow: Institute of Oceanology RAS, pp. 5-15 (in Russian).
  19. Yolsal-Çevikbilen, S. and Taymaz, T., 2012. Earthquake Source Parameters along the Hellenic Subduction Zone and Numerical Simulations of Historical Tsunamis in the Eastern Mediterranean. Tectonophysics, [e-journal] 536-537, pp. 61-100. doi:10.1016/j.tecto.2012.02.019
  20. Lobkovskii, L.I., Mazova, R.Kh. and Kolchina, E.A., 2014. Otsenki Maksimal'nykh Vysot Voln Tsunami dlya Poberezh'ya Goroda Sochi pri Vozmozhnykh Sil'nykh Podvodnykh Zemletryaseniyakh [Estimates of the Maximum Tsunami Wave Heights for the Sochi Coast under Possible Strong Underwater Earthquakes]. Doklady Akademii Nauk, 456(5), pp. 604-609 (in Russian).
  21. Mazova, R.Kh. and Tresvyatskaya, E.A., 2006. Numerical Modeling of the Generation of Long Waves by a Dynamic Seismic Source and their Propagation in the Black Sea. Russ. J. Earth Sci., [e-journal] 8(6), pp. ES6003. doi:10.2205/2006ES000212
  22. Lobkovskii, L.I., Mazova, R.Kh. and Kolchina, E.A., 2009. Maksimal'nye Vysoty Voln Tsunami na Sochinskom Poberezh'e pri Vozmozhnykh Sil'nykh Podvodnykh Zemletryaseniyakh [Maximum Heights of Tsunami Waves on the Sochi Coast with Possible Strong Underwater Earthquakes]. Mining Informational and Analytical Bulletin (scientific and technical journal), 18(12), pp. 16-21 (in Russian)
  23. Fomicheva, L.A., Rabinovich, A.B. and Demidov, A.N., 1991. Tsunami v Chernom More [Tsunami in the Black Sea]. In: Gidrometeorologiya i Gidrokhimiya Morey SSSR. Vol. 4. Chernoe More, Issue 1. Gidrometeorologicheskie Issledovaniya [Hydrometeorology and Hydrochemistry of the USSR Seas. T. IV. The Black Sea. Vol. 1. Hydrometeorological Studies]. Saint Petersburg: Gidrometeoizdat, pp. 352-354 (in Russian).
  24. Zaitsev, A.I., Kurkin, A.A., Polukhina, O.E., Samarina, N.M. and Yalchiner, A.C., 2003. Chislennoe Modelirovanie Vozmozhnykh Opolznevykh Tsunami v Chernom More [Numerical Modeling of Possible Landslide Tsunami in the Black Sea]. News Academy of Engineering Sciences A.M. Prokhorov. Prikladnaya Mathematics i Physics, (4), pp. 150-154 (in Russian).
  25. Zaitsev, A.I. and Pelinovsky, E.N., 2011. Forecasting of Tsunami Wave Heights at the Russian Coast of the Black Sea. Oceanology, [e-journal] 51(6), pp. 907-915. doi:10.1134/S0001437011050225
  26. Gazprom Export, 2016. TurkSream. [online] Available at: http://www.gazpromexport.ru/en/projects/6/ [Accessed 28 May 2016].
  27. South Stream, 2016. World Class Expertise. [online] Available at: http://www.south-stream-transport.com/ [Accessed 20 May 2016].
  28. Wells, D.L. and Coppersmith, K.J., 1994. New Empirical Relationships among Magnitude, Rupture Length, Rupture Width, Rupture Area and Surface Displacement. Bulletin of the Seismological Society of America, [e-journal] 84(4), pp. 974-1002. Available at: http://seismo.berkeley.edu/~rallen/teaching/eps256-s07/WellsCoppersmith1994.pdf [Accessed 20 May 2016].
  29. Lobkovskii, L.I. and Baranov, B.V., 1984. Klavishnaya Model' Sil'nykh Zemletryaseniy v Ostrovnykh Dugakh i Aktivnykh Kontinental'nykh Okrainakh [The Key Model of Strong Earthquakes in Island Arcs and Active Continental Margins]. Doklady AN SSSR, 275(4), pp. 843-847 (in Russian).
  30. Pelinovsky, E.N., 1982. Nelineynaya Dinamika Voln Tsunami [Nonlinear Dynamics of Tsunami Waves]. Gorkiy: IPF AN SSSR, 226 p. (in Russian).
  31. Sielecki, A. and Wurtele, M.G., 1970. The Numerical Integration of the Nonlinear Shallow-Water Equations with Sloping Boundaries. J. Comput. Phys., [e-journal] 6(2), pp. 219-236. doi:10.1016/0021-9991(70)90022-7

Download the article (PDF)