Numerical Modeling of Water Exchange through the Kerch Strait for Various Types of the Atmospheric Impact

V. V. Fomin1, ✉, D. I. Lazorenko1, I. N. Fomina2

1 Marine Hydrophysical Institute, Russian Academy of Sciences, Sevastopol, Russian Federation

2 Sevastopol Branch of the N.N. Zubov State Oceanographic Institute, Sevastopol, Russian Federation

e-mail: fomin.dntmm@gmail.com

Abstract

Water exchange through the Kerch Strait plays a fundamental role in formation of the hydrological, hydrochemical and hydrobiological regimes in the adjacent sea areas. This article examines features of water exchange through the Kerch Strait for various types of the atmospheric impact. The numerical hydrodynamic model ADCIRC was used. The results of numerical modeling of currents and sea level in the Azov – Black Sea basin on the non-uniform computational grid concentrated in the strait were used as the input data. The authors identified the ranges of wind directions at which water exchange through the strait is the most intense; and revealed the relationship between the maximum values of forward and reverse water flux with wind speed. The characteristics of free oscillations in the strait that occur after the wind stops were studied. Simulations show that the wind field generated by an atmospheric cyclone intensifies the total water exchange through the strait when of the cyclone passage speed decreases. The results of calculating water flow in the strait for real synoptic situations are consistent with the estimates obtained by other authors from the field data. The data from the WRF mesoscale meteorological model were used as atmospheric forcing. It was shown that the maximum water flux during storm period is 11000-16000 m3/s at the mean currents velocity ~ 0.6-0.9 m/s.

Keywords

the Sea of Azov, the Black Sea, the Kerch Strait, wind currents, sea level, water exchange, numerical simulation, ADCIRC

For citation

Fomin, V.V., Lazorenko, D.I. and Fomina, I.N., 2017. Numerical Modeling of Water Exchange through the Kerch Strait for Various Types of the Atmospheric Impact. Physical Oceanography, (4), pp. 79-89. doi:10.22449/1573-160X-2017-4-79-89

DOI

10.22449/1573-160X-2017-4-79-89

References

  1. Al'tman, E.N., 1976. K Voprosu ob Izmenchivosti Raskhodov Vody v Kerchenskom Prolive (po Naturnym Nablyudeniyam) [On the Water Flow Variability in the Kerch Strait (from Field Observations]. In: SOI, 1976. Trudy GOIN [SOI Proceedings]. Moscow: SOI. Iss. 132, pp. 17-28 (in Russian).
  2. Al'tman, E.N., 1991. Dinamika Vod Kerchenskogo Proliva [The Dynamics of the Kerch Strait Waters]. In: Gidrometeorologiya i Gidrokhimiya Morey SSSR [Hydrometeorology and hydrochemistry of the seas of the USSR]. Vol. 4. Chornoye More [The Black Sea]. Iss. 1. Gidrometeorologicheskie Usloviya [Hydrometeorological Conditions]. Leningrad: Gidrometeoizdat, pp. 291-328. Available at: http://www.geokniga.org/bookfiles/geokniga-t4-chernoe-more-vyp-1-gidrometeorologicheskie-usloviya-1991.pdf [Accessed 10 August 2016] (in Russian).
  3. Dyakov, N.N., Fomina, I.N., Timoshenko, T.Yu. and Polozok, A.A., 2016. Osobennosti Vodoobmena cherez Kerchenskiy Proliv po Dannym Naturnykh Nablyudeniy [Peculiarities of Water Exchange through Kerch Strait according to In Situ Data]. In: MHI, 2016. Ekologicheskaya Bezopasnost' Pribrezhnoy i Shel'fovoy Morya [Ecological Safety of Coastal and Shelf Zones of Sea]. Sevastopol: MHI. Vol. 1, pp. 62-67 (in Russian).
  4. Ilyin, Yu.P., Fomin, V.V., Dyakov, N.N. and Gorbach, S.B., 2009. Gidrometeorologicheskie Usloviya Morey Ukrainy. Tom 1. Azovskoe more [Hydrometeorological Conditions of the Seas of Ukraine. Volume 1. The Sea of Azov]. Sevastopol: ECOSI-Gidrofizika, 209 p. (in Russian).
  5. Ivanov, V.A. and Shapiro, N.B., 2004. Modelirovanie Techeniy v Kerchenskom Prolive [Modeling of Currents in the Kerch Strait]. In: MHI, 2004. Ekologicheskaya Bezopasnost' Pribrezhnoy i Shel'fovoy Zon i Kompleksnoe Ispol'zovanie Resursov Shel'fa [Ecological Safety of Coastal and Shelf Zones and Comprehensive Use of Shelf Resources]. Sevastopol: ECOSI-Gidrofizika. Iss. 10, pp. 207-232 (in Russian).
  6. Ivanov, V.A., Cherkesov, L.V. and Shul’ga, T.Y., 2011. Extreme Deviations of the Sea Level and the Velocities of Currents Induced by Constant Winds in the Azov Sea. Physical Oceanography, [e-journal] 21(2), pp. 98-105. doi:10.1007/s11110-011-9107-5
  7. Matishov, G.G. and Chikin, A.L., 2012. Issledovanie Vetrovykh Techeniy v Kerchenskom Prolive s Pomoshch'yu Matematicheskogo Modelirovaniya [Study of Wind Currents in the Kerch Strait Applying Mathematical Modeling]. Vestnik Yuzhnogo Nauchnogo Tsentra RAN [Vestnik SSC RAS], [e-journal] 8(2), pp. 27-32. Available at: http://ssc-ras.ru/files/files/27-32_Matishov1_.pdf [Accessed 10 August 2016] (in Russian).
  8. Tuchkovenko, Yu.S., 2002. Chislennaya Matematicheskaya Model' Tsirkulyatsii Vod v Kerchenskom Prolive [Numerical Mathematical Model of Water Circulation in the Kerch Strait]. In: MHI, 2002. Ekologicheskaya Bezopasnost' Pribrezhnoy i Shel'fovoy Zon i Kompleksnoe Ispol'zovanie Resursov Shel'fa [Ecological Safety of Coastal and Shelf Zones and Comprehensive Use of Shelf Resources]. Sevastopol: ECOSI-Gidrofizika. Iss. 6, pp. 223-232 (in Russian).
  9. Fomin, V.V., Polozok, A.A. and Fomina, I.N., 2015. Simulation of the Azov Sea Water Circulation Subject to the River Discharge. Physical Oceanography, [e-journal] (1), pp. 16-28. doi:10.22449/1573-160X-2015-1-15-26
  10. Luettich, R.A. and Westerink, J.J., 2004. Formulation and Numerical Implementation of the 2D/3D ADCIRC Finite Element Model Version 44.XX. ADCIRC, 74 p. Available at: http://www.unc.edu/ims/adcirc/publications/2004/2004_Luettich.pdf [Accessed 26 June 2017].
  11. Luettich Jr., R.A., Westerink, J.J. and Scheffner, N.W., 1992. ADCIRC: an Advanced Three-Dimensional Circulation Model for Shelves Coasts and Estuaries, Report 1: Theory and Methodology of ADCIRC-2DDI and ADCIRC-3DL. Dredging Research Program Technical Report DRP-92-6. Vicksburg: U.S. Army Engineers Waterways Experiment Station, 137 p. Available at: http://www.dtic.mil/get-tr-doc/pdf?AD=ADA261608 [Accessed 10 August 2016].
  12. Dietrich, J.C., Zijlema, M., Westerink, J.J., Holthuijsen, L.H., Dawson, C., Luettich Jr., R.A., Jensen, R.E., Smith, J.M., Stelling, G.S., Stone, G.W., 2011. Modeling Hurricane Waves and Storm Surge Using Integrally-Coupled, Scalable Computations. Coast. Engineer., [e-journal] 58(1), pp. 45-65. doi:10.1016/j.coastaleng.2010.08.001
  13. Sebastian, A.G., Proft, J.M., Dietrich, J.C., Du, W., Bedient, Ph.B. and Dawson, C.N., 2014. Characterizing Hurricane Storm Surge Behavior in Galveston Bay Using the SWAN + ADCIRC Model. Coast. Engineer., [e-journal] (88), pp. 171-181. doi:10.1016/j.coastaleng.2014.03.002
  14. Fomin, V.V. and Polozok, A.A., 2013. Tekhnologiya Modelirovaniya Shtormovykh Nagonov i Vetrovogo Volneniya v Azovskom More na Nestrukturirovannykh Setkakh [Technology of Simulation of Storm Surges and Wind Waves in the Azov Sea on Unstructured Grids]. In: MHI, 2013. Ekologicheskaya Bezopasnost' Pribrezhnoy i Shel'fovoy Zon i Kompleksnoe Ispol'zovanie Resursov Shel'fa [Ecological Safety of Coastal and Shelf Zones and Comprehensive Use of Shelf Resources]. Sevastopol: ECOSI-Gidrofizika. Iss. 27, pp. 139-145 (in Russian).
  15. Fomin, V.V., Polozok, A.A. and Kamyshnikov, R.V., 2014. Wave and Storm Surge Modelling for Sea of Azov with Use of SWAN + ADCIRC. In: SSC RAS, 2014. Geoinformation Sciences and Environmental Development: New Approaches, Methods, Technologies. Rostov-on-Don: Publishing house SSC RAS, pp. 111-116.

Download the article (PDF)