Numerical Study of Storm Surge Processes and Currents of the Sea of Azov During a Period of Extreme Winds

L. V. Cherkesov1, T. Ya. Shul’ga1, ✉, N. N. Dyakov2, R. R. Stanichnaya1

1 Marine Hydrophysical Institute, Russian Academy of Sciences, Sevastopol, Russian Federation

2 Sevastopol Branch of the N.N. Zubov State Oceanographic Institute, Sevastopol, Russian Federation

e-mail: shulgaty@mail.ru

Abstract

Magnitudes of storm surge fluctuations of the Azov Sea level occurring in this region during extreme winds and called "chernomorka" (reverse surface wind) are studied. These phenomena constitute a reason of floods in the coastal regions of the sea and the Taganrog Bay. Having been analyzed, the simulation results and the observation data of the sea level regime show their good compliance for the periods of strong storm cyclones moving from the northeast of the Black Sea. Interrelation between the parameters of the eastern and western storm winds observed in the Sea of Azov during the strong storms in 2013–2014 and the amplitudes both of the current velocities and the sea level fluctuations are defined. Hydrodynamic simulation is performed using the three-dimensional nonlinear Princeton Ocean Model (POM); at that real atmospheric forcing SKIRON corresponding to extreme storms is preset. Study of the storm surge frequency in different regions of the Azov Sea reveals the fact that the regions both of the sea eastern coast and the Taganrog Bay are exposed to catastrophic surges. Analysis of the currents induced by the storm winds demonstrates that in the sea surface layer the currents’ maximum velocity exceeds 2 m/s (2.12 m/s in March, 2013 and 2.45 m/s in September, 2014). At the same time, the current velocities in the sea bottom layer achieving 0.59 and 0.44 m/s can cause intense lithodynamic processes in the coastal zone. The Taganrog Bay is subjected to the most intense forcing of the surge processes at the extreme winds over the Sea of Azov; at that the maximum sea level deviations here mount to 1.8 m.

Keywords

the Sea of Azov, the Taganrog Bay, sea level, extreme winds over the Sea of Azov, currents, surge phenomena processes, numerical simulation, storm cyclones

For citation

Cherkesov, L.V., Shul’ga, T.Ya., Dyakov, N.N. and Stanichnaya, R.R., 2017. Numerical Study of Storm Surge Processes and Currents of the Sea of Azov During a Period of Extreme Winds. Physical Oceanography, (5), pp. 3-18. doi:10.22449/1573-160X-2017-5-3-18

DOI

10.22449/1573-160X-2017-5-3-18

References

  1. Matishov, G.G. and Matishov, D.G., 2013. Current Natural and Social Risks in the Azov-Black Sea Region. Herald of the Russian Academy of Sciences, [e-journal] 83(6), pp. 490-498. doi:10.1134/S1019331613090062
  2. Dotsenko, S.F. and Ivanov, V.A., 2010. Prirodnye Katastrofy Azovo-Chernomorskogo regiona [The Azov-Black Sea Region Nature Catastrophes]. [e-book] Sevastopol: EKOSI-Gidrofizika, 174 p. Available at: http://meteo.geofaq.ru/books/612759_D9-E3D_docenko_s_f_ivanov_v_a_prirodnye_katastrofy_azovo_chernomors.pdf [Accessed 20 August 2016] (in Russian).
  3. Shnyukov, E.F., Mitin, L.I. and Tsemko, V.P., 1994. Katastrofy v Chernom More [Disasters in the Black Sea]. Kiev: Manuskript, 269 p. (in Russian).
  4. Mikhaylov, V.N., Magritskiy, D.V., Ivanov, A.A., Efimova, L.E., Korotaev, V.N., Svitoch, A.A., Ivanov, V.V., Buzin, V.A. and Povalishnikova, E.S., 2010. Gidrologiya Del'ty i Ust'evogo Vzmor'ya Kubani [The Kuban Delta and Estuary Coastal Water Hydrology]. Moscow: GEOS, 728 p. (in Russian).
  5. Fomin, V.V., D'yakov, N.N., Timoshenko, T.Yu., Fomina, I.N., Levitskaya, O.V., Simov, V.G. and Martynov, E.S., 2012. Atlas Volneniya, Techeniy i Urovnya Azovskogo Morya [Atlas of the Sea of Azov Waves, Currents and Level]. Kiev: Fenix, 239 p. (in Russian).
  6. Terziev, F.S. ed., 1986. Gidrometeorologicheskie Usloviya Shel'fovoy Zony Morey SSSR. Tom 3. Azovskoe More [Hydrometeorological Conditions of Shelf Zone of the USSR Seas. Vol. 3. The Sea of Azov]. Leningrad: Gidrometeoizdat, 218 p. (in Russian).
  7. D'yakov, N.N. and Fomin V.V., 2002. Sinopticheskie Usloviya Vozniknoveniya Anomal'nykh Kolebaniy Urovnya Azovskogo Morya [Synoptic Conditions of the Sea of Azov Level Abnormal Fluctuation Occurrence]. In: UHMI, 2002. Proceedings of UHMI. Kiev: UHMI. Issue 250, 10 p. Available at: http://uhmi.org.ua/pub/np/250/28_Djakov.pdf [Accessed 30 January 2017] (in Russian).
  8. Matishov, G.G., Chikin, A.L., Berdnikov, S.V. and Sheverdyaev, I.V., 2014. The Extreme Flood in the Don River Delta, March 23-24, 2013, and Determining Factors. Doklady Earth Sciences, [e-journal] 455(1), pp. 360-363.doi:10.1134/S1028334X14030295
  9. Matishov, G.G., Berdnikov, S.V., Bespalova, L.A., Ivlieva, O.V., Tsygankova, A.E., Khartiev, S.M., Ioshpa, A.R., Kropyanko, L.V., Sushko, K.S., Sheverdyaev, I.V. and Bespalova, E.V., 2015. Sovremennye Opasnye Ekzogennye Protsessy v Beregovoy Zone Azovskogo Morya [Contemporary Hazardous Exogenous Processes in the Sea of Azov Coastal Zone]. Rostov-na-Donu: Southern Federal University, 323 p. (in Russian).
  10. Matishov, G.G. and Berdnikov, S.V., 2015. Ekstremal'noe Zatoplenie Del'ty Dona Vesnoy 2013 G. [Extreme Flooding in the Don River Delta in Spring 2013]. Izvestiya Rossiiskoi Akademii Nauk. Seriya Geograficheskaya, [e-journal] (1), pp. 111-118, http://dx.doi.org/10.15356/0373-2444-2015-1-111-118 (in Russian).
  11. Fomin, V.V., Lazorenko, D.I., Alekseev, D.V. and Polozok, A.A., 2015. Shtormovye Nagony v Taganrogskom Zalive i Zatoplenie Del'ty Dona [Storm Surge in the TagenrognBay and Flooding of the Don Delta]. In: Ivanov, V.A. ed., 2015. Ekologicheskaya Bezopasnost' Pribrezhnoy i Shel'fovoy Zon Morya [Ecological Safety of Sea Coastal and Shelf Zones]. Sevastopol: MHI NASU. Issue 1, pp. 74-82 (in Russian).
  12. Ivanov, V.A., Cherkesov, L.V. and Shul'ga, T.Ya., 2010. Dinamicheskie Protsessy i ikh Vliya-nie na Rasprostranenie i Transformatsiyu Zagryaznyayushchikh Veshchestv v Ogranichennykh Morskikh Basseynakh [Dynamic Processes and their Impact on Propagation and Transformation of Pollutants in Organic Marine Basins]. Sevastopol: EKOSI-Gidrofizika, 178 p.
  13. Ivanov, V.A., Cherkesov, L.V. and Shul’ga, T.Ya., 2012. Investigation of Effects of Spatially and Temporally Variable Wind on Currents, Surges, and Admixture Spread in the Sea of Azov. Russian Meteorology and Hydrology, [e-journal] 37(8), pp. 553-559. doi:10.3103/S1068373912080079
  14. Ivanov, V.A., Cherkesov, L.V. and Shu’lga, T.Ya., 2014. Dynamic Processes and Their Influence on the Transformation of the Passive Admixture in the Sea of Azov. Oceanology, [e-journal] 54(4), pp. 426-434, doi:10.1134/S0001437014030023
  15. Blumberg, A.F. and Mellor, G.L., 1987. A Description of a Three Dimensional Coastal Ocean Circulation Model. In: N. Heaps, ed., 1987. Three-Dimensional Coastal Ocean Models. Washington, D.C.: American Geophysical Union., Vol. 4, pp. 1-16.
  16. Fomin, V.V., 2002. Chislennaya Model' Tsirkulyatsii Vod Azovskogo Morya [Numerical Model of the Sea of Azov Water Crculation]. In: UHMI, 2002. Proceedings of UHMI. Kiev: UHMI. Issue 249, pp. 246-255 (in Russian).
  17. Kallos, G., Nickovic, S., Jovic, D., Kakaliagou, O., Papadopoulos, A., Misirlis, N., Boukas, L., Mimikou, N., Sakellaridis, G., Papageorgiou, J., Anadranistakis, E. and Manousakis, M., 1997. The Regional Weather Forecasting System SKIRON and its Capability for Forecasting Dust Uptake and Transport. In: WMO, 1997. Proceedings of the WMO Conference on Dust Storms, 1-6 November 1997, Damascus, Syria. Damascus, pp 9-17.
  18. Mellor, G.L. and Yamada, T., 1982. Development of a Turbulence Closure Model for Geophysical Fluid Problems. Rev. Geophys., [e-journal] 20(4), pp. 851-875. doi:10.1029/rg020i004p00851 doi:10.1029/RG020i004p00851
  19. Smagorinsky, J., 1963. General Circulation Experiments with the Primitive Equations. I. The Basic Experiment. Mon. Wea.. Rev., [e-journal] 91(3), pp. 99-164. doi:10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2
  20. Wannawong, W., Wongwises, U. and Vongvisessomjai, S., 2011. Mathematical Modeling of Storm Surge in Three Dimensional Primitive Equations. International Journal of Mathematical, Computational, Physical, Electrical and Computer Engineering, 5(6), pp. 797-806. Available at: http://waset.org/publications/6330/mathematical-modeling-of-storm-surge-in-three-dimensional-primitive-equations [Accessed: 30 January2017].
  21. Large, W.G. and Pond, S., 1981. Open Ocean Momentum Flux Measurements in Moderate to Strong Winds. J. Phys. Oceanogr., [e-journal] 11(3), pp. 324-336. doi:10.1175/1520-0485(1981)011<0324:OOMFMI>2.0.CO;2
  22. Grant, W.D. and Madsen, O.S., 1979. Combined Wave and Current Interaction with a Rough Bottom. J. Geophys. Res., [e-journal] 84(C4), pp. 1797-1808, doi:10.1029/JC084iC04p01797
  23. Courant, R., Friedrichs, K.O. and Lewy, H., 1967. On the Partial Difference Equations of Mathematical Physics. IBM Journal of Research and Development, [e-journal] 11(2), pp. 215-234. doi:10.1147/rd.112.0215
  24. Janjić, Z.I., 1984. Nonlinear Advection Schemes and Energy Cascade on Semi-Staggered Grids. Mon. Wea. Rev., [e-journal] 112(6), pp. 1234-1245. doi:10.1175/1520-0493(1984)112<1234:NASAEC>2.0.CO;2

Download the article (PDF)