Three-Dimensional Identification of the Black Sea Mesoscale Eddies according to NEMO Numerical Model Calculations

A. A. Kubryakov, A. I. Mizyuk, O. S. Puzina, M. V. Senderov

Marine Hydrophysical Institute, Russian Academy of Sciences, Sevastopol, Russian Federation

e-mail: arskubr@ya.ru

Abstract

A new method of three-dimensional identification of mesoscale eddies based on the results of the Black Sea hydrodynamics modeling is applied. It is based on identification of the closed streamlines in the velocity fields. This method and the data resulted from the NEMO calculations for 2005–2008 are used to identify more than 1000 mesoscale eddies in the basin. The results permit to define eddy characteristic trajectories, calculate spatial variability of their velocities and radii and frequency of detection of cyclones and anticyclones. The obtained results are in good agreement with the earlier published studies of the eddy characteristics derived from satellite and in situ data. The modeling results permit to investigate the features of vertical distribution of eddy characteristics. The eddies are most often detected in the 0–150 m layer (the highest detection frequency F is within 20–50 m). In the 150–300 m layer this value is two times smaller, but still is substantial. Below 300 meters F quickly decreases with depth. The analogous distribution is characteristic of the eddy radii and orbital velocity: the highest values are observed in the upper 0–150 m layer, and in the lower layers they sharply decrease with depth. The analysis of seasonal variability of the eddy characteristics shows that the anticyclonic dynamics intensifies in summer, whereas the cyclonic one – in winter, that is consistent with the previous studies. The developed method provides additional opportunities for investigating the features of the eddy generation and evolution in the Black Sea.

Keywords

mesoscale eddies, Black Sea, modeling, vertical structure, automatic identification

Acknowledgements

The analysis of eddy characteristics and the development of method for three-dimensional automatic identification of eddies was carried out with the financial support of RFBR grant 16-05-00714. Analysis of eddies seasonal variability was supported by RFBR grant 17-05-41089. Numerical dynamics modeling was carried out with financial support the State Order No. 0827-2015-0001.

Original russian text

Original Russian Text © The Authors, 2018, published in MORSKOY GIDROFIZICHESKIY ZHURNAL, Vol. 34, Iss. 1, pp. 20–28 (2018)

For citation

Kubryakov, A.A., Mizyuk, A.I., Puzina, O.S. and Senderov, M.V., 2018. Three-Dimensional Identification of the Black Sea Mesoscale Eddies according to NEMO Numerical Model Calculations. Physical Oceanography, (1), pp. 18-26. doi:10.22449/1573-160X-2018-1-18-26

DOI

10.22449/1573-160X-2018-1-18-26

References

  1. Ivanov, V.A. and Belokopytov, V.N., 2013. Oceanography of the Black Sea. Sevastopol: ECOSY-Gidrofizika, 210 p. (in Russian).
  2. Krivosheya, V.G., Titov, V.B., Ovchinnikov, I. M., Kos’yan R.D and Skirta A.Y., 2000. The Influence of Circulation and Eddies on the Depth of the Upper Boundary of the Hydrogen Sulfide Zone and Ventilation of Aerobic Waters in the Black Sea. Oceanology, 40(6), pp. 767-776.
  3. Latun, V.S., 1990. Anticyclonic Eddies in the Black Sea in the Summer of 1984. Soviet Journal of Physical Oceanography, [e-journal] 1(4), pp. 279-286. https://doi.org/10.1007/BF021973974
  4. Ginzburg, A.I., Kostianoy, A.G., Nezlin, N.P., Soloviev, D.M and Stanichny, S.V., 2002. Anticyclonic Eddies in the Northwestern Black Sea. Journal of Marine Systems, [e-journal] 32(1-3), pp. 91-106. https://doi.org/10.1016/S0924-7963(02)00035-0
  5. Korotaev, G., Oguz, T., Nikiforov, A., Koblinsky, C., 2003. Seasonal, Interannual, and Mesoscale Variability of the Black Sea Upper Layer Circulation Derived from Altimeter Data. Journal of Geophysical Research, [e-journal] 108(C4), pp. 3122. https://www.doi.org/doi:10.1029/2002JC001508
  6. Kubryakov, A.A. and Stanichny, S.V., 2015. Mesoscale Eddies in the Black Sea from Satellite Altimetry Data. Oceanology, [e-journal] 55(1), pp 56-67. https://doi.org/10.1134/S0001437015010105
  7. Kubryakov, A.A. and Stanichny, S.V., 2015. Seasonal and Interannual Variability of the Black Sea Eddies and its Dependence on Characteristics of the Large-Scale Circulation. Deep-Sea Res. I, [e-journal] 97, pp. 80-91. https://doi.org/10.1016/j.dsr.2014.12.002
  8. Kubryakov, A.A., Stanichny, S.V., Zatsepin, A.G. and Kremenetskiy, V.V., 2016. Long-term Variations of the Black Sea Dynamics and Their Impact on the Marine Ecosystem. J. Mar. Syst., [e-journal] 163, pp. 80-94. https://doi.org/10.1016/j.jmarsys.2016.06.006
  9. Oguz, T., Latun, V.S., Latif, M.A., Vladimirov, V.V., Sur, H.I., Markov, A.A., Özsoy, E., Kotovshchikov, B.B., Eremeev, V.V. [et al], 1993. Circulation in the Surface and Intermediate Layers of the Black Sea. Deep-Sea Res. I, [e-journal] 40(8).pp. 1597-1612. https://doi.org/10.1016/0967-0637(93)90018-X
  10. Shapiro, G.I., Stanichny, S.V. and Stanychna, R.R., 2010. Anatomy of Shelf–Deep Sea Exchanges by a Mesoscale Eddy in the North West Black Sea as Derived from Remotely Sensed data. Remote Sensing of Environment, [e-journal] 114(4), pp. 867-875. https://doi.org/10.1016/j.rse.2009.11.020
  11. Zatsepin, A.G., Ginzburg, A.I., Kostianoy, A.G., Kremenetskiy, V.V., Krivosheya, V.G., Stanichny, S.V. and Poulain, P-M., 2003. Observations of Black Sea Mesoscale Eddies and Associated Horizontal Mixing. J. Geophys. Res., [e-journal] 108(C8), 3246. https://doi.org/doi:10.1029/2002JC001390
  12. Staneva, J.V., Dietrich, D.E., Stanev, E.V. and Bowman, M.G., 2001. Rim Current and Coastal Eddy Mechanisms in an Eddy-Resolving Black Sea General Circulation Model. Journal of Marine Systems, [e-journal] 31(1-3), pp. 137-157. https://doi.org/10.1016/S0924-7963(01)00050-1
  13. Demyshev, S.G. and Dymova, O.A., 2013. Numerical Analysis of the Mesoscale Features of Circulation in the Black Sea Coastal Zone. Izvestiya, Atmospheric and Oceanic Physics, [e-journal] 49(6), pp. 603-610. https://doi.org/10.1134/S0001433813060030
  14. Lishaev, P.N., Korotaev, G.K., Knysh, V.V., Mizyuk, A.I. and Dymova, O.A., 2014. Vosstanovleniye Sinopticheskoy Izmenchivosti Gidrofizicheskikh Poley Chernogo Morya na Osnove Reanaliza za 1980-1993 Gody [Reproduction of Synoptic Variability of the Black Sea Hydrophysical Fields Based on Reanalysis for 1980-1993]. Morskoy Gidrofizicheskiy Journal, (5), pp. 49-68 (in Russian).
  15. Lin, X., Dong, C., Chen, D., Liu, Y., Yang, J., Zou, B. and Guan, Y., 2015. Three-Dimensional Properties of Mesoscale Eddies in the South China Sea based on Eddy-Resolving Model Output. Deep-Sea Res. I, [e-journal] 99, pp. 46-64. https://doi.org/10.1016/j.dsr.2015.01.007
  16. Chaigneau, A., Gizolme, A. and Grados, C., 2008. Mesoscale Eddies off Peru in Altimeter Records: Identification Algorithms and Eddy Spatio-Temporal Patterns. Progress in Oceanogaphy, [e-journal] 79(2-4), pp. 106-119. https://doi.org/10.1016/j.pocean.2008.10.013
  17. Madec, G., 2008. NEMO Ocean Engine. Note du Pôle de modélisation. Technical Report. France: Institut Pierre-Simon Laplace. No. 27. Available at: https://www.nemo-ocean.eu/doc/NEMO_book.html [Accessed: 11 December 2017].
  18. Puzina, O.S. and Mizyuk, A.I., 2017. Vliyaniye Parametrov Vertikal'nogo Peremeshivaniya na Temperaturu Verkhnego Sloya Chernogo Morya [Influence of Vertical Mixing Parameters on the Temperature of the Upper Layer of the Black Sea]. In: IO RAS, 2017. Kompleksnyye Issledovaniya Mirovogo Okeana: Materialy II Vserossiyskoy Nauchnoy Konferentsii Molodykh Uchenykh [Complex Studies of the World Ocean: Materials of the II All-Russian Scientific Conference of Young Scientists] Moscow: IO RAS (in Russian).
  19. Mellor, G.L. and Yamada, T., 1982. Development of a Turbulence Closure Model for Geophysical Fluid Problems. Rev. Geophys., [e-journal] 20(4), pp. 851-875. https://doi.org/10.1029/RG020i004p00851
  20. Shokurov, M.V., 2011. Numerical Modeling of the Atmospheric Circulation over the Black Sea. In: MHI, 2011. Ekologicheskaya Bezopasnost' Pribrezhnoj i Shel'fovoj Zon i Kompleksnoe Ispol'zovanie Resursov Shel'fa [Ecological Safety of Coastal and Shelf Zones and Comprehensive Use of Shelf Resources]. Sevastopol: MHI NANU. Iss. 25, Vol. 2, pp. 91-113 (in Russian).
  21. Chelton, D.B., Schlax, M.G. and Samelson, R.M., 2011. Global Observations of Nonlinear Mesoscale Eddies. Prog. Oceanogr., [e-journal] 91(2), pp. 167-216. https://doi.org/10.1016/j.pocean.2011.01.002
  22. Blokhina, M.D. and Afanasyev, Y.D., 2003. Baroclinic Instability and Transient Features of Mesoscale Surface Circulation in the Black Sea: Laboratory Experiment. J. Geophys. Res., [e-journal] 108(C10), 3122. https://doi.org/10.1029/2003JC001979
  23. Zatsepin, A.G., Denisov, E.S., Emelyanov, S.V. and Stanichny, S.V., 2005. Effect of bottom slope and wind on the near-shore current in a rotating stratified fluid: laboratory modeling for the Black Sea. Oceanology, 45(l), pp. S13-S26.

Download the article (PDF)