Comparison of the Secondary Products Obtained by the Optical Sensor Installed at the Satellite “Resurs-P” with the Products of the Analogous Optical Sensors

S. V. Fedorov

Marine Hydrophysical Institute, Russian Academy of Sciences, Sevastopol, Russian Federation

e-mail: s.fedorov@mhi-ras.ru

Abstract

Characteristics of the wide-swath multi-spectral equipment with high-resolution (WSME-HR) installed at the Russian Resurs-P type satellites are represented. The possibility of applying the data obtained by this sensor for solving the satellite hydrophysics problems is considered. The chlorophyll a concentration and the normalized water-leaving radiance calculated by the Earth operational monitoring scientific center JSC Russian Space Systems are compared with the similar products of the foreign optical sensors MODIS (Aqua and Terra) and OLI (Landsat-8). Being analyzed, the normalized water-leaving radiance spectra show the values retrieved from the WSME-HR data to be about two times higher in the red spectral range and by 15–20 % smaller in the green spectral range than the analogous ones resulted from the foreign sensors; whereas in the blue spectral range they do not reproduce both their typical maximum on the 488 nm wavelength and their decrease accompanying the dissolved colored organic matter absorption at the 412 and 443 nm. The chlorophyll a concentration values derived from the data of all the sensors are comparable with each other. This fact is explained by minimum differences between the values of the normalized water-leaving radiance at the 488 and 555 nm applied for calculating the chlorophyll a concentration.

Keywords

optical multi-spectral sensor, chlorophyll-a concentration, normalized water-leaving radiance, WSME-HR, Resurs-P, MODIS, OLI

Acknowledgements

The work was carried out within the framework of the State Order No. 0827-2014-0011 Research of the Regularities of Changes in the Condition of the Marine Environment on the Basis of Operational Observations and Data of the System of Diagnosis, Prognosis and Reanalysis of the Condition of Marine Areas (R&D 115061510036).

Original russian text

Original Russian Text © S. V. Fedorov, 2018, published in MORSKOY GIDROFIZICHESKIY ZHURNAL, Vol. 34, Iss. 1, pp. 29–39 (2018)

For citation

Fedorov, S.V., 2018. Comparison of the Secondary Products Obtained by the Optical Sensor Installed at the Satellite “Resurs-P” with the Products of the Analogous Optical Sensors. Physical Oceanography, (1), pp. 27-35. doi:10.22449/1573-160X-2018-1-27-35

DOI

10.22449/1573-160X-2018-1-27-35

References

  1. Franz, B.A., Bailey, S.W., Kuring, N.A. and Werdell, P.J., 2015. Ocean Color Measurements with the Operational Land Imager on Landsat-8: Implementation and Evaluation in SeaDAS. J. Appl. Remote Sens., [e-journal] 9(1), 096070, 16 p. doi:10.1117/1.JRS.9.096070
  2. Vanhellemont, Q. and Ruddick, K., 2014. Turbid Wakes Associated with Offshore Wind Turbines Observed with Landsat-8. Remote Sens. Environ., [e-journal] 145, pp. 105-115. doi:10.1016/j.rse.2014.01.009
  3. Zhang, Y., Pulliainen, J.T., Koponen, S.S. and Hallikainen, M.T., 2003. Water Quality Retrievals from Combined Landsat TM Data and ERS-2 SAR Data in the Gulf of Finland. IEEE Trans. Geosci. Remote Sens., [e-journal] 41(3), pp. 622-629. doi:10.1109/TGRS.2003.808906
  4. Pahlevan, N., Sheldon, P., Peri, F., Wei, J., Shang, Z., Sun, Q., Chen, R.F., Lee, Z., Schaaf, C.B., Schott, J.R. and Loveland, T., 2016. Calibration/Validation of Landsat-Derived Ocean Colour Products in Boston Harbour. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., [e-journal] XLI-B8, pp. 1165-1168. https://doi.org/10.5194/isprs-archives-XLI-B8-1165-2016
  5. Wang, J.J., Lu, X.X., Liew, S.C. and Zhou, Y., 2009. Retrieval of Suspended Sediment Concentrations in Large Turbid Rivers Using Landsat ETM+: an Example from the Yangtze River, China. Earth Surf. Process. Landforms, [e-journal] 34, pp. 1082-1092. doi:10.1002/esp.1795
  6. Yu, Z., Chen, X., Zhou, B., Tian, L., Yuan, X. and Feng, L., 2012. Assessment of Total Suspended Sediment Concentrations in Poyang Lake Using HJ-1A/1B CCD Imagery. Chin. J. Ocean. Limnol., [e-journal] 30(2), pp. 295-304. http://dx.doi.org/10.1007/s00343-012-1094-y
  7. Li, J., Tian, L., Chen, X., Li, X., Huang, J., Lu, J. and Feng, L., 2014. Remote-Sensing Monitoring for Spatio-Temporal Dynamics of Sand Dredging Activities at Poyang Lake in China. Int. J. Remote Sens., [e-journal] 35(16), pp. 6004-6022. doi:10.1080/01431161.2014.939783
  8. Vasilyev, A.I., Korshunov, A.P., Olshevskiy, N.A. and Stremov, A.S., 2015. Programnye Tehnologii Sozdaviya i Rasprostraneniya Bazovyh Produktov Distantsionnogo Zondirovaniya Zemli [Software Technologies for Generation and Distribution of Basic Earth Remote Sensing Data Products]. Rocket-Space Device Engineering and Information Systems, 2(3), pp. 23-32 (in Russian).
  9. Markov, A.N., Vasilyev, A.I., Olshevskiy, N.A., Korshunov, A.P., Mikhalenkov, R.A., Salimonov, B.B. and Stremov, A.S., 2016. Arhitektura Geoinformatsionnogo Servisa Bank Bazovyh Produktov [Architecture of the Basic Product Bank Geoinformation Service]. Sovremennye Problemy Distantsionnogo Zondirovaniya Zemli iz Kosmosa [Current Problems in Remote Sensing of the Earth from Space], [e-journal] 13(5), pp. 39-51 (in Russian). doi:10.21046/2070-7401-2016-13-5-39-51
  10. Baklanov, A.I., Afonin, А.N., Blinov, V.D. and Zabiyakin, A.S., 2016. KShMSA – Compleks Shirokozahvatnoy Multispektralnoy Apparatury Kosmicheskogo Apparata Resurs-P [СWSME – Complex of Wide-Swath Multispectral Equipment for the “Resource-P” Spacecraft]. Vestnik of the Samara State Aerospace University, [e-journal] 15(2), pp. 22-29 (in Russian). doi:10.18287/2412-7329-2016-15-2-22-29
  11. Wang, M. ed., 2010. Atmospheric Correction for Remotely-Sensed Ocean-Colour Products (IOCCG Report Number 10). Dartmouth, Canada: International Ocean-Colour Coordinating Group, 78 p. Available at: http://ioccg.org/reports/report10.pdf [Accessed: 16 February 2018].
  12. Mobley, C.D., Werdel,l J., Franz, B., Ahmad, Z. and Bailey, S., 2016. Atmospheric Correction for Satellite Ocean Color Radiometry. Greenbelt, MD, USA: NASA Goddard Space Flight Center, 73 p. Available at: https://oceancolor.gsfc.nasa.gov/docs/technical/NASA-TM-2016-217551.pdf [Accessed: 16 February 2018].
  13. Ocean Biology Processing Group at NASA Goddard Flight Center. Algorithm Description of the Standard Suit of Ocean Color Products. [on-line] Available at: https://oceancolor.gsfc.nasa.gov/atbd [Accessed: 16 February 2018].
  14. Ahmad, Z., Franz, B.A., McClain, C.R., Kwiatkowska, E.J., Werdell, P.J., Shettle, E.P. and Holben, B.N., 2010. New Aerosol Models for the Retrieval of Aerosol Optical Thickness and Normalized Water-Leaving Radiances from the SeaWiFS and MODIS Sensors over Coastal Regions and Open Oceans. Appl. Opt., [e-journal] 49(29), pp. 5545-5560. doi:10.1364/AO.49.005545
  15. Bailey, S.W., Franz, B.A. and Werdell, P.J., 2010. Estimation of Near-Infrared Water-Leaving Reflectance for Satellite Ocean Color Data Processing. Optics Express, [e-journal] 18(7), pp. 7521-7527. doi:10.1364/OE.18.007521

Download the article (PDF)