Application of the Adaptive Statistics Method for Reanalysis of the Black Sea Fields Including Assimilation of the Temperature and Salinity Pseudo-Measurements in the Model
G. K. Korotaev, V. V. Knysh✉, P. N. Lishaev, S. G. Demyshev
Marine Hydrophysical Institute, Russian Academy of Sciences, Sevastopol, Russian Federation
✉ e-mail: vaknysh@yandex.ru
Abstract
To assimilate the thermohaline parameters’ pseudo-measurements in the model, applied is the method of adaptive statistics, the characteristic feature of which consists in adjusting the three-dimensional errors’ dispersions of the temperature and salinity forecast to the water circulation in the basin. The three-dimensional fields of the temperature and salinity pseudo-measurements are reconstructed in the 100–500 m layer based on the altimetry data and the Argo buoys’ limited measurements. The method is approved and validated by comparing the sea fields reconstructed in the reanalysis for 2012 with the Argo measurements. It is revealed that on the horizons 100, 113 and 125 m, the dispersions of differences (residuals) between the temperature pseudo-measurements and its model values somewhat exceed the model dispersion; whereas on the horizons within the 150–500 m layer, they are smaller. The daily standard deviation of the model level (relative to that reconstructed using the altimetry data) is smaller than the deviation calculated in the forecast; and during the March – September period, it is lower than the standard deviation resulted from the pseudo-measurements’ assimilation by the simplified method. Resolution of the mesoscale vortices in the currents’ fields is higher in case the method of adaptive statistics is used.
Keywords
adaptive statistics, dispersion of forecast errors, pseudo-measurements, validation, dispersion of residuals
Acknowledgements
The work was carried out within the framework of the state order on the topic No. 0827-2014-0011 "Studies of the regularities of the marine environment condition changes on the basis of operational observations and data from the system of now cast, prognosis and reanalysis of the state of marine areas" ("Operational Oceanography" code), and with partial support of RFBR, grant No. 16-05-00621.
Original russian text
Original Russian Text © The Authors, 2018, published in MORSKOY GIDROFIZICHESKIY ZHURNAL, Vol. 34, Iss. 1, pp. 40–56 (2018)
For citation
Korotaev, G.K., Knysh, V.V., Lishaev, P.N. and Demyshev, S.G., 2018. Application of the Adaptive Statistics Method for Reanalysis of the Black Sea Fields Including Assimilation of the Temperature and Salinity Pseudo-Measurements in the Model. Physical Oceanography, 25(1), pp. 36-51. doi:10.22449/1573-160X-2018-1-36-51
DOI
10.22449/1573-160X-2018-1-36-51
References
- Agoshkov, V.I., Parmuzin, E.I. and Shutyaev, V.P., 2013. Observational Data Assimilation in the Problem of Black Sea Circulation and Sensitivity Analysis of its Solution. Izvestiya. Atmospheric and Oceanic Physics, [e-journal] 49(6), pp. 592-602. doi:10.1134/S0001433813060029
- Gejadze, I.Yu., Le Dimet, F.-X. and Shutyaev, V., 2008. On Analysis Error Covariances in Variational Data Assimilation. SIAM J. Sci. Comput., [e-journal] 30(4), pp. 1847-1874. doi:10.1137/07068744X
- Zalesny, V.B. and Ivchenko, V.O., 2015. Simulating Large-Scale Circulation in Seas and Oceans. Izvestiya. Atmospheric and Ocean Physics, [e-journal] 51(3), pp. 259-271. doi:10.1134/S0001433815030135
- Jazwinski, A.H., 1970. Stochastic Processes and Filtering Theory. New York: Academic Press, 376 p.
- Sakava, Y., 1972. Optimal Filtering in Linear Distributed-Parameter Systems. International Journal of Control, [e-journal] 16(1), pp. 115-127. https://doi.org/10.1080/00207177208932247
- Belyaev, K.P., Tanajura, C.A.S. and Tuchkova, N.P., 2012. Comparison of Methods for Argo Drifters Data Assimilation into a Hydrodynamical Model of the Ocean. Oceanology, [e-jour-nal] 52(5), pp. 593-603. doi:10.1134/S0001437012050025
- Kaurkin, M.N., Ibrayev, R.A. and Belyaev, K.P., 2016. Data Assimilation in the Ocean Circulation Model of High Spatial Resolution Using the Methods of Parallel Programming. Russ. Meteorol. Hydrol., [e-journal] 41(7), pp. 479-486. https://doi.org/10.3103/S1068373916070050
- Dorofeev, V.L. and Sukhikh, L.I., 2016. Analysis of Variability of the Black Sea Hydrophysical Fields in 1993–2012 Based on the Reanalysis Results. Physical Oceanography, [e-journal] (1), pp. 33-47. doi:10.22449/1573-160X-2016-1-33-47
- Evensen, G., 2003. The Ensemble Kalman Filter: Theoretical Formulation and Practical Implementation. Ocean Dyn., [e-journal] 53(4), pp. 343-367. doi:10.1007/s10236-003-0036-9
- Counillon, F. and Bertino, L., 2009. High-Resolution Ensemble Forecasting for the Gulf of Mexico Eddies and Fronts. Ocean Dyn., [e-journal] 59(1), pp. 83-95. doi:10.1007/s10236-008-0167-0
- Klimova, E.G., 2001. Model’ Rascheta Kovariatsiy Oshibok Prognoza v Algoritme Fil’tra Kalmana, Osnovannaya Na Polnykh Uravneniyakh [A Model for Calculating the Covariance of Forecast Errors in the Kalman Filter Algorithm, Based on the Complete Equations]. Meteorologiya i Gidrologiya, (11), pp. 11-21 (in Russian).
- Mizyuk, A.I., 2009. Osobennosti Realizatsii Algoritma Adaptivnoy Statistiki v σ-Koordina-tnoy Modeli v Zadache Vosstanovleniya Gidrofizicheskikh Poley Chernogo Moray [Realization Features of the Adaptive Statistics Algorithm in a σ-Coordinate Model for Problem of the Reconstruction of the Black Sea Hydrophysical Fields]. In: MHI, 2009. Ekologicheskaya Bezopasnost' Pribrezhnoy i Shel'fovoy Zon i Kompleksnoe Ispol'zovanie Resursov Shel'fa [Ecological Safety of Coastal and Shelf Zones and Comprehensive Use of Shelf Resources]. Sevastopol: ECOSI-Gidrofizika. Iss. 18, pp. 180-192 (in Russian).
- Knysh, V.V., Demyshev, S.G., Inyushina, N.V. and Korotaev, G.K., 2008. Assimilation of Climatic Hydrological Data in a Black-Sea Model Based on the Algorithm of Adaptive Statistics of Prognostic Errors. Physical Oceanography, [e-journal] 18(1), pp. 14-24. doi:10.1007/s11110-008-9006-6
- Mizyuk, A.I., 2014. Reanaliz Gidrofizicheskikh Poley Chernogo Morya na Osnove Assimilyatsii Dannykh Izmereniy Temperatury i Solenosti v z-Koordinatnoy Modeli [Reanalysis of the Black Sea Hydrophysical Fields Based on Temperature and Salinity Measurement Data Assimilation in the z-Coordinate Model]. Morskoy Gidrofizicheskiy Zhurnal, (3), pp. 30-47 (in Russian).
- Korotaev, G.K., Lishaev, P.N. and Knysh, V.V., 2016. Reconstruction of the Three-Dimensional Salinity and Temperature Fields of the Black Sea on the Basis of Satellite Altimetry Measurements. Izvestiya, Atmospheric and Oceanic Physics, [e-journal] 52 (9), pp. 961-973. doi:10.1134/S0001433816090152
- Lishaev, P.N., Korotaev, G.K., Knysh, V.V., Mizyuk, A.I. and Dymova, O.A., 2014. Vosstanovlenie Sinopticheskoy Izmenchivosti Gidrofizicheskikh Poley Chernogo Morya na Osnove Reanaliza za 1980–1993 Gody [Reproduction of Synoptic Variability of the Black Sea Hydrophysical Fields Based on Reanalysis for 1980-1993]. Morskoy Gidrofizicheskiy Zhurnal, (5), pp.49-68 (in Russian).
- Pacanowsci, R.C. and Philander, S.G.H., 1981. Parameterization of Vertical Mixing in Numerical Models of Tropical Oceans. J. Phys. Oceanogr., [e-journal] 11(11), pp. 1443-1451. doi:10.1175/1520-0485(1981)011<1443:POVMIN>2.0.CO;2
- Berrisford, P., Dee, D., Fielding, K., Fuentes, M., Kållberg, P., Kobayashi, S. and Uppala, S., 2009. The ERA-Interim Archive. Version 1.0. Berkshire: ECMWF, 16 p. Available at: https://www.ecmwf.int/sites/default/files/elibrary/2009/8173-era-interim-archive.pdf [Accessed: 18.08.2017].
- Gandin, L.S. and Kagan, R.L., 1976. Statisticheskie Metody Interpretatsii Meteorologicheskikh Dannykh [Statistical Methods for the Interpretation of Meteorological Data]. Leningrad: Gidrometeoizdat, 357 p. (in Russian).
- Pietrzak, J., 1998. The Use of TVD Limiters for Forward-in-Time Upstream-Biased Advection Schemes in Ocean Modeling. Mon. Wea. Rev., [e-journal] 126(3), pp. 812-830. doi:10.1175/1520-0493(1998)126<0812:TUOTLF>2.0.CO;2
- Kaurkin, M.N., Ibrayev, R.A. and Belyaev, K.P., 2016. ARGO Data Assimilation into the Ocean Dynamics Model with High Spatial Resolution Using Ensemble Optimal Interpolation (EnOI). Oceanology [e-journal], 56(6), pp. 774-781. https://doi.org/10.1134/S0001437016060059
- Ivanov, V.A. and Belokopytov, V.N., 2011. Okeanographiya Chernogo Morya [Oceanography of the Black Sea]. Sevastopol: ECOSI-Gidrofizika, 212 p. (in Russian).
- Ratner, Yu.B., Kubryakov, A.I., Kholod, A.L., Bayankina, T.M. and Ivanchik, M.V., 2014. Ispol'zovanie Dannykh Izmereniy s Dreyfuyushchikh Buev SVP-DTC i Argo dlya Validatsii Rezul'tatov Prognoza Temperatury Vody v Pribrezhnoy Oblasti Chernogo Morya [Application SVP-BTC and Argo Drifters’ Measurement Data for Validating the Results of Seawater Temperature in the Black Sea Coastal Zone]. Morskoy Gidrofizicheskiy Zhurnal, (5), pp. 33-48 (in Russian).
- Korotaev, G.K., Sarkisyan, A.S., Knysh, V.V. and Lishaev, P.N., 2016. Reanalysis of Seasonal and Interannual Variability of Black Sea Fields for 1993–2012. Izvestiya. Atmos. Ocean. Phys., [e-journal] 52(4), pp. 418-430, doi:10.1134/S0001433816040071
- AVISO+ – Satellite Altimetry Data. [online] Available at: http://www.aviso.oceanobs.com [Accessed: 20.08.2017].