Numerical Simulation of Propagation of the Black Sea and the Azov Sea Tsunami Through the Kerch Strait

L. I. Lobkovsky1, R. Kh. Mazova2, ✉, E. A. Baranova2, A. M. Tugaryov2

1 Shirshov Institute of Oceanology, Russian Academy of Sciences, Moscow, Russian Federation

2 Nizhny Novgorod State Technical University n. a. R. E. Alekseev, Nizhny Novgorod, Russian Federation

e-mail: raissamazova@yandex.ru

Abstract

The present paper deals with the potential strong tsunamigenic earthquakes with the sources localized in the Black and Azov seas at the entrance and exit of the Kerch Strait, respectively. Since, at present time, the tsunami hazards are usually assessed for the critical earthquake magnitude values, potential strong earthquakes with a magnitude M = 7 are studied. The seismic sources of elliptical form are considered. When choosing the source location in the northeast of the Black Sea, the most seismically dangerous areas of the basin under consideration are allowed for. Numerical simulation is carried out within the framework of the nonlinear shallow water equations with the dissipative effects taken into account. Two possible scenarios of tsunami propagation at the chosen source locations are analyzed. The wave characteristics are obtained for a tsunami wave motion both from the Black Sea through the Kerch Strait to the Azov Sea. The symmetrical problem for a tsunami wave propagation from the Azov Sea through the Kerch Strait to the Black Sea is also considered. Spectral analysis of the tsunami wave field is carried out for the studied basin. The wave and energy characteristics of the tsunami waves in the area of the bridge across the Kerch Strait are subjected to the detailed examination and assessment.

Keywords

source of earthquake, tsunami waves, numerical simulation, spectral characteristics of a wave field

Acknowledgements

The present research was carried under the financial support of the RSF (Project No. 14-50-00095).

Original russian text

Original Russian Text © The Authors, 2018, published in MORSKOY GIDROFIZICHESKIY ZHURNAL, Vol. 34, Iss. 2, pp. 111–122 (2018)

For citation

Lobkovsky, L.I., Mazova, R.Kh., Baranova, E.A. and Tugaryov, A.M., 2018., Numerical Simulation of Propagation of the Black Sea and the Azov Sea Tsunami through the Kerch Strait. Physical Oceanography, 25(2), pp. 102-113. doi: 10.22449/1573-160X-2018-2-102-113

DOI

10.22449/1573-160X-2018-2-102-113

References

  1. Polubok, T.M., 2013. Izuchennost’ Processov Litologo-Geomorfologicheskikh Izmeneniy Dna Kerchenskogogo Proliva [The tendencies of Modern Litologic Geomorphological Changes of Bottom of the Kerch Channel]. Bulletin of Odessa State Environmental University, iss. 15, pp. 187-196 (in Ukrainian).
  2. Eremeev, V.N., Ivanov, V.A. and Ilyin, Yu.P., 2003. Okeanograficheskie Usloviya i Ekologicheskie Problemy Kerchenskogo Proliva [Oceanographic Conditions and Ecological Problems in the Kerch Strait]. Marine Ecological Journal, 2 (3), pp. 27-40 (in Russian).
  3. Tormasov, Yu.B., 2014. Proekt-Konceptsiya “Universal’niy Transportniy Perekhod Cherez Kerchenskiy Proliv” [Project and Concept “Universal Transport Crossing through the Kerch Strait”]. Available at: http://kerch-most.ru/pdf/orig-booklet_3docx.pdf [Accessed 15 August 2017] (in Russian).
  4. Kerchenskiy Most: Mifi i Real’nost [Kerch Bridge: Myths and Realities]. [online] Available at: http://history-paradox.ru/kerch-most.php [Accessed 15 August 2017].
  5. Nikonov, A.A., 1995. Manifestations of Young Tectonic Activity in the Southern Azov and Kerch Fault Zones (Crimea)]. Geotectonics, 28(5), pp. 380-390.
  6. Pustovitenko, B.G. and Kul’chitskiy, V.E., 1991. Seismichnost’ Chernomorskoy Vpadini [The Black Sea Trough Seismisity]. The Journal of Geophysics, 13(1), pp. 14-19 (in Russian).
  7. Solov’eva, O.N. and Kuzin, I.P., 2005. Seismicity and Tsunamis in the Northeastern Part of the Black Sea. Oceanology, 45(6), pp.781-794.
  8. Ulomov, V.I. and Bogdanov, M.I., 2013. Noviy Komplekt Kart Obshchego Seysmicheskogo Rayonirivaniya Territorii Rossiyskoy Federatsii (OSR-2012) [A New Set of the Seismic Zoning Maps of the Russian Federation (GSZ-2012)]. Inzhenernye izyskaniya, [e-journal] (8), pp. 30-39 (in Russian).
  9. Nikonov, A.A., 1997. Tsunami Occurrence on the Coasts of the Black Sea and the Sea of Azov. Izvestiya. Physics of the Solid Earth, [e-journal] 33(1), pp. 77-87.
  10. Dotsenko, S.F. and Ingerov, A.V., 2011. Numerical Analysis of the Propagation and Amplification of Tsunami Waves of Seismic Generation in the Sea of Azov]. Physical Oceanography, [e-journal] 21(5), pp. 295-304. doi:10.1007/s11110-012-9123-0
  11. Papadopoulos, G.A., Diakogianni, G., Fokaefs, A. and Ranguelov, B., 2011. Tsunami Hazard in the Black Sea and the Azov Sea: A New Tsunami Catalogue. Nat. Hazards Earth Syst. Sci., [e-journal] 11(3), pp. 945-963. doi:10.5194/nhess-11-945-2011
  12. Partheniu, R., Diaconescu, M., Ioane, D. and Marmureanu, A., 2015. Tsunami Modeling Scenarios for Some of the Seismic Sources in the Black Sea Area, Using Tsunami Analysis Tool Software. Extended abstract presented at the 8th Congress of the Balkan Geophysical Society, 5-8 October 2015, Chania, Crete. doi:10.3997/2214-4609.201414139
  13. Oaie, G., Seghedi, A. and Rădulescu, V., 2016. Natural Marine Hazards in the Black Sea and the System of their Monitoring and Real-Time Warning. Geo-Eco-Marina, 22(2016), pp. 5-28. http://doi.org/10.5281/zenodo.889593
  14. Shnyukov, E.F., Mitin, L.I. and Tsemko, V.P., 1994. Katastrofy v Chyornom more [Catastrophes in the Black Sea]. Kiev: Manuskript, 296 p. (in Russian).
  15. Grigorash, Z.K., 1972. Obzor Udalyonnykh Mareogramm Nekotorykh Tsunsami v Chyornom More [The Review of Some Distant Tsunami Mariograms in the Black Sea]. In: SakhKNII, 1972. Trudy SakhKNII [Transactions of Sakhalin Complex Scientific-Research Institute]. Yuzhno-Sakhalinsk: SakhKNII. Iss. 29, pp. 271-278 (in Russian).
  16. Dotsenko, S.F., 1998. Tsunami Hazard Assessment for the Black Sea. Moscow University Physics Bulletin, 53(4) pp. 17-22.
  17. Dotsenko, S.F., 2005. Evaluation of the Parameters of Tsunami Waves along the South Coast of the Crimean Peninsula. Physical Oceanography, [e-journal] 15(3), pp. 133-141. https://doi.org/10.1007/s11110-005-0036-z
  18. Wells, D.L. and Coppersmith, K.J., 1994. New Empirical Relationships among Magnitude, Rupture Length, Rupture Width, Rupture Area, and Surface Displacement. Bull. Seism. Soc. Am., 84(4), pp. 974–1002. Available at: https://www.researchgate.net/publication/215755871_New_Empirical_Relationships_among_Magnitude_Rupture_Length_Rupture_Width_Rupture_Area_and_Surface_Displacement [Accessed 17 August 2017].
  19. Sielecki, A. and Wurtele, M.G., 1970. The Numerical Integration of the Nonlinear Shallow-Water Equations with Sloping Boundaries. J. Comput. Phys., 6(2), pp. 219-236. doi:10.1016/0021-9991(70)90022-7
  20. Vol’tsinger, N.E., Klevanny, K.A. and Pelinovsky, E.N., 1989. Dlinnovolnovaya Dynamika Pribrezhnoy Zony [Long-Wave Dynamics of the Coastal Zone]. Leningrad: Gidrometeoizdat, 272 p. (in Russian).
  21. Mazova, R.Kh., Kiselman, B.A. and Kolchina E.A., 2014. Numerical Simulation of Tsunami Wave Height Distribution for Turkish Black Sea Coast in Nonlinear Dynamic Keyboard Model of Underwater Seismic Source. J. Comput. Applied Mathem., [e-journal] 259(B), pp. 887-896. doi:10.1016/j.cam.2013.08.034
  22. Lobkovsky, L.I., Mazova, R.K. and Kolchina, E.A., 2014. Estimation of Maximum Heights of Tsunami Waves for the Sochi Coast from Strong Submarine Earthquakes. Doklady Earth Sciences, [e-journal] 456(2), pp. 749-754. https://doi.org/10.1134/S1028334X14060269

Download the article (PDF)