Submesoscale Eddy Structures and Frontal Dynamics in the Barents Sea

O. A. Atadzhanova1, 2, ✉, A. V. Zimin1, E. I. Svergun1, 2, A. A. Konik1, 2

1 Shirshov Institute of Oceanology, Russian Academy of Sciences, Moscow, Russian Federation

2 Russian State Hydrometeorological University, Saint-Petersburg, Russian Federation

e-mail: oksana.atadzhanova@gmail.com

Abstract

Complex analysis of spatial and temporal variability of surface manifestations of the submesoscale eddies in the Barents Sea is carried out based on generalization of a large amount of satellite SAR-images of ENVISAT ASAR obtained in course of the warm periods in 2007 and 2011. The relationship between the eddy structures and the frontal dynamics is also quantitatively evaluated. It is found that the submesoscale eddies represent a widespread phenomenon in the sea. They are most often observed to the northwest off the Franz Josef Land, near the eastern coast of the Western Spitsbergen, between the Franz Josef Land and the Novaya Zemlya, in the southwestern part of the sea and near the Kanin Nos peninsula. But their absolute maximum is recorded to the northeast off the Rybachy Peninsula. In both years the eddy activity peak falls on July. Though the diameters of the eddies under study vary from 0.2 to 25 km, those with the diameters 2–4 km (~ 45%) and of a cyclonic rotation type (~ 80%) are the most numerous. Being analyzed, the sea surface temperature data permit to reveal significant mesoscale and synoptic dynamics of the frontal zones and the associated frontal boundaries throughout the entire sea in course of the whole warm season. Comparison of the eddy locations with variability of the fronts’ positions for each month (based on the data of 2007) shows that the submesoscale structures are often recorded within these regions (up to 50%). The period of the highest eddy activity in July coincides with that of the strongest synoptic and mesoscale dynamics of the fronts.

Keywords

submesoscale eddy, satellite radar image, sea surface temperature, thermal frontal zone, Polar front, Marginal ice or Arctic front, the Barents Sea

Acknowledgements

The research was carried out within the framework of State Order No. 0149-2018-0014 "Wave processes, transport phenomena and biogeochemical cycles in the seas and oceans: the study of forming mechanisms on the basis of physical-mathematical modeling and in situ experimental works".

Original russian text

Original Russian Text © The Authors, 2018, published in MORSKOY GIDROFIZICHESKIY ZHURNAL, Vol. 34, Iss. 3, pp. 237–246 (2018)

For citation

Atadzhanova, O.A., Zimin, A.V., Svergun, E.I. and Konik, A.A., 2018. Submesoscale Eddy Structures and Frontal Dynamics in the Barents Sea. Physical Oceanography, 25(3), pp. 220-228. doi: 10.22449/1573-160X-2018-3-220-228

DOI

10.22449/1573-160X-2018-3-220-228

References

  1. Terziev, F.S. ed., 1990. Gidrometeorologiya i Gidrokhimiya Morey SSSR. Tom 1. Barentsevo More. Vyp. 1. Gidrometeorologicheskie Usloviya [Hydrometeorology and Hydrochemistry of the Seas of the USSR. Vol. 1. The Barents Sea. Part 1: Hydrometeorological Conditions]. Leningrad: Gidrometeoizdat, 280 p. (in Russian).
  2. Ozhigin, V.K., Ivshin, V.A., Trofimov, A.G., Karsakov, A.L. and Anciferov, M.Y., 2016. Vody Barentseva Morya: Struktura, Tsirkulyatsiya, Izmenchivost' [The Barents Sea Water: Structure, Circulation, and Variability]. Murmansk: PINRO, 259 p. (in Russian).
  3. Oziel, L., Sirven, J. and Gascard, J.-C., 2016. The Barents Sea Frontal Zones and Water Masses Variability (1980–2011). Ocean Science, [e-journal] 12(1), pp. 169-184. doi:10.5194/os-12-169-2016
  4. Fer, I. and Drinkwater, K., 2014. Mixing in the Barents Sea Polar Front near Hopen in Spring. Journal of Marine Systems, [e-journal] 130, pp. 206-218. doi:10.1016/j.jmarsys.2012.01.005
  5. Bystrov, V.P., Volodin, V.V., Taradin, S.P. and Shcherbachenko, S.V., 1998. Opyt Avtomati-zirovannogo Kartografirovaniya Gidrologicheskikh Frontov (na Primere Barentseva morya) [The Experience of Automated Mapping of Hydrological Fronts (on the Example of the Barents Sea)]. Working paper. Moscow: IKI. (in Russian, unpublished).
  6. Lebedev, I.A., 1992. O Vliyanii Glubinnykh Atlanticheskikh Vod na Ledovo-Gidrologi-cheskie Protsessy v Severnoi Chasti Barentseva Morya [On Influence of Deep Atlantic Waters on the Ice-Hydrological Processes in the Northern Part of the Barents Sea]. In: G.V. Alekseev and A.P. Makshtas eds., 1992. Proceedings of the Arctic and Antarctic Research Institute, vol. 430. Saint Peterburg: Gidrometeoizdat, pp. 145-156 (in Russian).
  7. Rodionov, V.B. and Kostyanoy, A.G, 1998. Okeanicheskie Fronty Morei Severo-Evropeis-kogo Basseina [Oceanic Fronts of the North-European Basin Seas]. Moscow: GEOS, 290 p. (in Russian).
  8. Carroll, M.L., Ambrose, W.G.J., Locke, W.L., Ryan, S.K. and Johnson, B.J., 2014. Bivalve Growth Rate and Isotopic Variability across the Barents Sea Polar Front. Journal of Marine Systems, [e-journal] 130, pp. 167-180. doi:10.1016/j.marpolbul.2009.02.022
  9. Morozov, A.N., Pavlov, V.K., Pavlova, O.A. and Fedorov, S.V., 2017. Polar Frontal Zone of the Barents Sea Western Trough Based on Direct Measurements in 2007. Physical Oceanography, [e-journal] (2), pp.36-50. doi:10.22449/1573-160X-2017-2-36-50
  10. Johannessen, O.M. and Foster, L.A., 1978. A Note on the Topographically Controlled Oceanic Polar Front in the Barents Sea. Journal of Geophysical Research, [e-journal] 83(C9), pp. 4567-4571. doi:10.1029/JC083iC09p04567
  11. Kushnir, V., Pavlov, V., Morozov, A. and Pavlova, O., 2011. “Flashes” of Chlorophyll-a Concentration Derived from in Situ and Remote Sensing Data at the Polar Front in the Barents Sea. The Open Oceanography Journal, [e-journal] 5, pp. 14-21. doi:10.2174/1874252101105010014
  12. Lebedev, I.A, 1992. Nekotorye Rezul'taty Statisticheskogo Analiza Sinopticheskoi i Mezomasshtabnoi Izmenchivosti Temperatury Vody v Barentsevom More [Some Results of Statistical Analysis of Synoptic and Mesoscale Variability of Water Temperature in the Barents Sea]. In: G.V. Alekseev and A.P. Makshtas eds., 1992. Proceedings of the Arctic and Antarctic Research Institute, vol. 430. Saint Peterburg: Gidrometeoizdat, pp.169-181 (in Russian).
  13. Kostyanoy, A.G., Lebedev, I.A., Novikov, B.A. and Rodionov, V.B, 1992. O Vikhreobrazovanii v Polyarnoi Frontal'noi Zone Barentseva Morya [On eddy formation in the Polar Frontal Zone of the Barents Sea]. In: S.L. Dzhenyuk and G.G. Zykova eds., 1992. Proceedings of the Arctic and Antarctic Research Institute, vol. 426. Saint Peterburg: Gidrometeoizdat, pp. 19-32 (in Russian).
  14. Atadzhanova, O.A., Zimin, A.V., Romanenkov, D.A. and Kozlov, I.E., 2017. Satellite Radar Observations of Small Eddies in the White, Barents and Kara Seas. Physical Oceanography, [e-journal] (2), pp. 75-83. doi:10.22449/1573-160X-2017-2-75-83
  15. Mikhailova, N.V. and Yurovsky, A.V., 2017. Analysis of Principal Components of the Sea Ice Concentration Fields in the Barents Sea. Physical Oceanography, [e-journal] (2), pp. 11-18. doi:10.22449/1573-160X-2017-2-11-18
  16. Mityagina, M.I. and Lavrova, O.Yu., 2009. Sputnikovye Nablyudeniya Vikhrevykh i Volnovykh Protsessov v Pribrezhnoi Zone Severo-Vostochnoi Chasti Chernogo Morya [Satellite Observations of Eddy and Wave Processes in the Coastal Waters of the North-Eastern Black Sea]. Issledovanie Zemli iz Kosmosa, (5). pp. 72-79 (in Russian).
  17. Zimin, A.V., Atazhanova, O.A., Romanenkov, D.A., Kozlov, I.E. and Chapron, B., 2016. Submezomasshtabnye Vikhri v Belom More po Dannym Sputnikovykh Radiolokatsionnykh Izmerenii [Submesoscale Eddies in the White Sea Based on Satellite SAR Data]. Issledovanie Zemli iz Kosmosa, (1-2), pp. 129-135. doi:10.7868/S020596141506010X (in Russian).
  18. Karimova, S.S., 2012. Spiral Eddies in the Baltic, Black and Caspian Seas as Seen by Satellite Radar Data. Advances in Space Research, [e-journal] 50(8), pp. 1107-1124. doi:10.1016/j.asr.2011.10.027
  19. Timmermans, M.-L. and Winsor, P., 2013. Scales of Horizontal Density Structure in the Chukchi Sea Surface Layer. Continental Shelf Research, [e-journal] 52, pp. 39-45. doi:10.1016/j.csr.2012.10.015
  20. D'Asaro, E.A., 1988. Generation of Submesoscale Vortices: A New Mechanism. Journal of Geophysical Research, [e-journal] 93(C6), pp.6685-6693. doi:10.1029/JC093iC06p06685

Download the article (PDF)