Influence of the Vertical Turbulent Exchange Parameterization on the Results of Reanalysis of the Black Sea Hydrophysical Fields

L. I. Sukhikh, V. L. Dorofeyev

Marine Hydrophysical Institute, Russian Academy of Sciences, Sevastopol, Russian Federation

e-mail: l.sukhikh@gmail.com

Abstract

Comparative analysis of two simulations of the Black Sea hydrophysical fields’ long-term variability in 1993–2012 is performed. Two reanalyses are done using various methods of parametrizing the vertical turbulent exchange in the circulation model. The first variant implies a simple parameterization including the constant coefficient of vertical turbulent viscosity and the coefficient of vertical turbulent diffusion in a form of climatic profiles. The second simulation includes the turbulence model of the Mellor-Yamada type to parametrize the vertical exchange processes. Having been compared, the reanalysis results and the measurement data show that application of the turbulent model for parametrizing the vertical exchange yields a better description of the Black Sea water thermohaline structure. In particular, structure of the summer seasonal thermocline and location of the main halocline (in both of them maximum deviations of the model temperature and salinity from the in-situ measurement data are observed) are reproduced more accurately. Different methods of parametrizing the momentum vertical exchange influence the horizontal circulation vertical structure. The first variant of simulation shows that a significant part of the currents’ kinetic energy is concentrated in the thin 10-m layer, and this fact affects the circulation features of shallow water on the northwestern shelf; whereas the simulation based on the turbulent model implies more intensive transfer of the kinetic energy to the lower layers. The carried out investigation shows that the results of the hydrophysical fields’ reanalysis depend on accurate description of the thermodynamic processes in the sea upper layer and the vertical turbulent exchange ones, in particular.

Keywords

reanalysis, Black Sea dynamics, numerical modeling, data assimilation, thermohaline structure

Acknowledgements

The investigation is carried out within the framework of the state task on the theme No. 0827-2018-0002 “Development of the methods of operational oceanology based on the inter-disciplinary studies of the marine environment formation and evolution processes, and mathematical modeling using the data of remote and direct measurements” (code “Operational oceanology”) (numerical modeling with satellite data assimilation) under support of the RSF No.17-77-30001 “New methods and supercomputer technologies of the World Ocean and Arctic basin nowcast and forecast” (analysis of the obtained results).

Original russian text

Original Russian Text © L. I. Sukhikh, V. L. Dorofeyev, 2018, published in MORSKOY GIDROFIZICHESKIY ZHURNAL, Vol. 34, Iss. 4, pp. 283–301 (2018)

For citation

Sukhikh, L.I. and Dorofeyev, V.L., 2018. Influence of the vertical turbulent exchange parameterization on the results of reanalysis of the Black Sea hydrophysical fields. Physical Oceanography, 25(4), pp. 262-279. doi:10.22449/1573-160X-2018-4-262-279

DOI

10.22449/1573-160X-2018-4-262-279

References

  1. Knysh, V.V., Kubryakov, A.I., Moiseenko, V.A., Belokopytov, V.N. and Inyushina, N.V., 2008. Tendentsii v Izmenchivosti Termokhalinnykh i Dinamicheskikh Kharakteristik Chernogo Morya, Vydelennye po Rezul'tatam Reanaliza za Period 1985-1994 [Trends in the Black Sea Thermohaline and Dynamic Variability Defined by the Results of Reanalysis for 1985-1994 Years Period]. In: MHI, 2008. Ekologicheskaya Bezopasnost' Pribrezhnoy i Shel'fovoy Zon i Kompleksnoe Ispol'zovanie Resursov Shel'fa [Ecological Safety of Coastal and Shelf Zones and Comprehensive Use of Shelf Resources]. Sevastopol: MHI. Iss. 16, pp. 279-290 (in Russian).
  2. Knysh, V.V., Korotaev, G.K., Moiseenko, V.A., Kubryakov A.I., Belokopytov V.N. and Inyushina, N.V., 2011. Seasonal and Interannual Variability of Black Sea Hydrophysical Fields Reconstructed from 1971-1993 Reanalysis Data. Izvestiya, Atmospheric and Oceanic Physics, [e-journal] 47(3), pp. 399-411. https://doi.org/10.1134/S000143381103008X
  3. Knysh, V.V., Korotaev, G.K., Mizyuk, A.I. and Sarkisyan, A.S., 2012. Assimilation of Hydrological Observation Data for Calculating Currents in Seas and Oceans. Izvestiya, Atmospheric and Oceanic Physics, [e-journal] 48(1), pp. 57-73. https://doi.org/10.1134/S0001433812010057
  4. Dorofeev, V.L. and Sukhikh, L.I., 2017. Study of Long-Term Variability of Black Sea Dynamics on the Basis of Circulation Model Assimilation of Remote Measurements. Izvestiya, Atmospheric and Oceanic Physics, [e-journal] 53(2), pp. 224-232. doi:10.1134/S0001433817020025
  5. Dorofeev, V.L. and Sukhikh, L.I., 2016. Analysis of Variability of the Black Sea Hydrophysical Fields in 1993-2012 Based on the Reanalysis Results. Physical Oceanography, [e-journal] (1), pp. 33-47. doi:10.22449/1573-160X-2016-1-33-47
  6. Sukhikh, L.I. and Dorofeyev, V.L. 2016. The Study of Sensitivity of the Black Sea Hydrophysical Fields Reanalysis Results to the Applied Atmospheric Forcing. Physical Oceanography, [e-journal] (5), pp. 45-60. doi:10.22449/1573-160X-2016-5-45-60
  7. Staneva, J.V., Dietrich, D.E., Stanev, E.V. and Bowman, M.G., 2001. Rim Current and Coastal Eddy Mechanisms in an Eddy-Resolving Black Sea General Circulation Model. Journal of Marine Systems, [e-journal] 31(1-3), pp. 137-157. doi:10.1016/S0924-7963(01)00050-1
  8. Zalesny, V.B., Gusev, A.V. and Moshonkin, S.N., 2013. Numerical Model of the Hydrodyna-mics of the Black Sea and the Sea of Azov with Variational Initialization of Temperature and Salinity. Izvestiya, Atmospheric and Oceanic Physics, [e-journal] 49(6), pp. 642-658. doi:10.1134/S0001433813060133
  9. Zalesnyi, V.B., Gusev, A.V. and Agoshkov, V.I., 2016. Modeling Black Sea Circulation with High Resolution in the Coastal Zone. Izvestiya, Atmospheric and Oceanic Physics, [e-journal] 52(3), pp. 277-293. doi:10.7868/S0002351516030147
  10. Agoshkov, V.I., Parmuzin, E.I. and Shutyaev, V.P., 2013. Observational Data Assimilation in the Problem of Black Sea Circulation and Sensitivity Analysis of its Solution. Izvestiya, Atmospheric and Oceanic Physics, [e-journal] 49(6), pp. 592-602. doi:10.7868/S0002351513060023
  11. Diansky, N.A., Fomin, V.V., Zhokhova, N.V. and Korshenko, A.N., 2013. Simulations of Currents and Pollution Transport in the Coastal Waters of Big Sochi. Izvestiya, Atmospheric and Oceanic Physics, [e-journal] 49(6), pp. 611-621. doi:10.1134/S0001433813060042
  12. Kordzadze, A.A. and Demetrashvili, D.I., 2013. Short-Range Forecast of Hydrophysical Fields in the Eastern Part of the Black Sea. Izvestiya, Atmospheric and Oceanic Physics, [e-journal] 49(6), pp. 674-685. doi:10.1134/S0001433813060091
  13. Demyshev, S.G. and Korotaev, G.K., 1992. Chislennaya Energosbalansirovannaya Model' Baroklinnykh Techeniy Okeana s Nerovnym Dnom na Setke C [Numerical Energy-Balanced Model of Baroclinic Currents in the Ocean with Bottom Topography on the C-Grid]. In: IVM RAN, 1992. Chislennye Modeli i Rezul'taty Kalibrovochnykh Raschetov Techeniy v Atlanti-cheskom Okeane [Numerical Models and the Results of Calibrating Currents in the Atlantic Ocean], Moscow: IVM RAN, pp. 163-231 (in Russian).
  14. Korotaev, G.K., Oguz, T., Dorofeyev, V.L., Demyshev, S.G., Kubryakov, A.I. and Rat-ner, Yu.B., 2011. Development of Black Sea Nowcasting and Forecasting System. Ocean Science, [e-journal] 7(5), pp. 629-649. https://doi.org/10.5194/os-7-629-2011
  15. Galperin, B., Kantha, L.H., Hassid, S. and Rosati, A., 1988. A Quasi-Equilibrium Turbulent Energy Model for Geophysical Flows. Journal of the Atmospheric Sciences, [e-journal] 45(1), pp. 55-62. doi:10.1175/1520-0469(1988)045<0055:AQETEM>2.0.CO;2
  16. Mellor, G.L. and Yamada, T., 1982. Development of a Turbulence Closure Model for Geophysical Fluid Problems. Reviews of Geophysics, [e-journal] 20(4), pp. 851-875. doi:10.1029/RG020i004p00851
  17. Dorofeyev, V.L. and Sukhikh, L.I., 2017. Modeling of Long-Term Evolution of Hydrophy-sical Fields of the Black Sea. Oceanology, [e-journal] 57(6), pp. 784-796. doi:10.1134/S0001437017060017
  18. Dee, D.P., Uppala, S.M., Simmons, A.J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M.A. and Balsamo, G. [et al.], 2011. The ERA-Interim Reanalysis: Configuration and Performance of the Data Assimilation System. Quarterly Journal of the Royal Meteorological Society, [e-journal] 137(656), pp. 553-597. doi:10.1002/qj.828
  19. Ovchinnikov, I.M. and Popov, Yu.I., 1984. K Voprosu o Formirovanii Kholodnogo Prome-zhutochnogo Sloya v Chernom More [On the Formation of the Cold Intermediate Layer in the Black Sea]. Doklady of the Academy of Sciences of the USSR. Earth Science Sections, 279(4), pp. 986-989 (in Russian).
  20. Gertman, I.F., 1991. Termohalinnaya Struktura Vod Morey [Thermohaline Structure of Sea Water]. In: A.I. Simonov & E.N. Altman eds., 1991. Gidrometeorologiya i Gidrokhimiya Morey SSSR. 1991. T. IV. Chernoe More. Vyp. 1. Gidrometeorologicheskie Usloviya [Hydrometeorology and Hydrochemistry of the USSR seas. The Black Sea. Iss. 1. Hydro-meteorological Conditions]. Saint Petersburg: Gidrometeoizdat, pp. 146-195 (in Russian).
  21. Nelepo, B.A. ed., 1980. Kompleksnye Okeanograficheskie Issledovaniya Chernogo Morya [Complex Oceanographic Studies of the Black Sea]. Kiev: Naukova dumka, 240 p. (in Russian).
  22. Nelepo, B.A. ed., 1984. Izmenchivost Gidrofizicheskih Poley Chernogo Morya [Variability of Hydrophysical Fields of the Black Sea]. Leningrad: Gidrometeoizdat, 240 p. (in Russian).
  23. Simonov, A.I. and Altman, E.N. eds., 1991. Gidrometeorologiya i Gidrokhimiya Morey SSSR. 1991. T. IV. Chernoe More. Vyp. 1. Gidrometeorologicheskie Usloviya [Hydrometeorology and Hydrochemistry of the USSR seas. Vol. IV. The Black Sea. Iss. 1. Hydrometeorological Conditions]. Saint Petersburg: Gidrometeoizdat, 4(1), 429 p. (in Russian).
  24. Oguz, T. and Besiktepe, S., 1999. Observations on the Rim Current sSructure, CIW Formation and Transport in the w\Western Black Sea. Deep Sea Research, [e-journal] 46(10), pp. 1733-1753. https://doi.org/10.1016/S0967-0637(99)00028-X
  25. Korotaev, G., Oguz, T., Nikiforov, A. and Koblinsky, C., 2003. Seasonal, Interannual, and Mesoscale Variability of the Black Sea Upper Layer Circulation Derived from Altimeter Data. Journal of Geophysical Research, [e-journal] 108(C4), pp. 3122. https://doi.org/10.1029/2002JC001508
  26. Zhurbas, V.M., Zatsepin, A.G., Grigor'eva, Yu.V., Eremeev, V.N., Kremenetsky, V.V., Motyzhev, S.V., Poyarkov, S.G., Poulain, P.-M., Stanichny, S.V. and Soloviev, D.M., 2004. Water Circulation and Characteristics of Currents of Different Scales in the Upper Layer of the Black Sea from Drifter Data. Oceanology, 44(1), pp. 30-43.

Download the article (PDF)