Estimating Specific Features of the Optical Property Variability in the Black Sea Waters Using the Data of SeaWiFS and MODIS Satellite Instruments

V. S. Suetin, S. N. Korolev

Marine Hydrophysical Institute, Russian Academy of Sciences, Sevastopol, Russian Federation

e-mail: s.korolev@mhi-ras.ru

Abstract

Problem of quantitative interpretation of the Black Sea observations provided by the SeaWiFS and MODIS satellite instruments is considered in the terms of spectral dependencies of the seawater optically active components. For this purpose, the results of standard data (accumulated in the NASA archive) processed by the GIOP (Generalized ocean color inversion model for retrieving marine Inherent Optical Properties) complex method are analyzed. As these results often contain significant distortions related to the atmospheric disturbances, selection of reliable test data implies the following requirement: large cloudless areas of the sea should contain no sudden chaotic spatial-temporal fluctuations of all the defined products and no false local correlations between the fields of the atmospheric and seawater parameters. Besides, imposed are the conditions for sufficiently accurate model reproduction of the empirical spectra of the sea surface reflectance and coincidence of the results obtained from the SeaWiFS and MODIS instruments. Application of the GIOP method permits to analyze the features of variations and the relative role of the light absorption components in the upper water layer associated with phytoplankton and the dissolved yellow substance. In the deep-water part of the Black Sea in summer, yellow substance makes the main contribution to absorption, and during the summer-autumn transition period, approximately equal growth of both the phytoplankton and the yellow substance absorptions is observed. Having been compared, the features of the Black Sea and the Equatorial Pacific waters are represented as an example. In contrast to the Black Sea, phytoplankton in the Equatorial Pacific is a dominating factor, whereas the yellow substance content remains almost unchanged.

Keywords

the Black Sea, the Pacific Ocean, satellite observations, spectral dependencies, optical characteristics, MODIS, SeaWiFS, GIOP, phytoplankton, yellow substance

Acknowledgements

The authors are grateful to the NASA GSFC processing satellite information group (URL: link:http://oceancolor.gsfc.nasa.gov/[]) for the opportunity to use the empirical data. The research was carried out within the framework of the State Order No. 0827-2014-0011 “Investigation of Regularities of the Marine Environment State Changes Based on the Operational Observations and the Nowcast, Forecast and Reanalysis System Data on the Marine Environment State” (Operational oceanography code).

Original russian text

Original Russian Text © V. S. Suetin, S. N. Korolev, 2018, published in MORSKOY GIDROFIZICHESKIY ZHURNAL, Vol. 34, Iss. 4, pp. 357–368 (2018)

For citation

Suetin, V.S. and Korolev, S.N., 2018. Estimating Specific Features of the Optical Property Variability in the Black Sea Waters Using the Data of SeaWiFS and MODIS Satellite Instruments. Physical Oceanography, 25(4), pp. 330-340. doi:10.22449/1573-160X-2018-4-330-340

DOI

10.22449/1573-160X-2018-4-330-340

References

  1. O'Reilly, J.E., Maritorena, S., Mitchell, B.G., Siegel, D.A., Carder, K.L., Garver, S.A., Kahru, M. and McClain, C., 1998. Ocean Color Chlorophyll Algorithms for SeaWiFS. Journal of Geophysical Research, [e-journal] (103), pp. 24937-24953. doi:10.1029/98JC02160
  2. Suetin, V.S., Suslin, V.V., Korolev, S.N. and Kucheryavyi, A.A., 2002. Analysis of the Variability of the Optical Properties of Water in the Black Sea in Summer 1998 according to the Data of a SeaWiFS Satellite Instrument. Physical Oceanography, [e-journal] 12(6), pp. 331-340. doi:10.1023/A:1021729229168
  3. Kopelevich, O.V., Burenkov, V.I. and Sheberstov, S.V., 2006. Razrabotka I Ispol'zovanie Regional'nykh Algoritmov dlya Rascheta Bioopticheskikh Kharakteristik Morey Rossii po Dannym Sputnikovykh Skanerov Tsveta [The Development and Using of the Regional Algorithms for the Calculation of the Bio-Optical Characteristics of Russian Seas from Ocean Color Satellite Data]. Sovremennye Problemy Distantsionnogo Zondirovaniya Zemli iz Kosmosa [Current Problems in Remote Sensing of the Earth from Space], 3(2), pp. 99-105 (in Russian).
  4. Kopelevich, O.V., Vazyulya, S.V., Saling, I.V., Sheberstov, S.V. and Burenkov, V.I., 2015. Elektronnyy Atlas “Bioopticheskie Kharakteristiki Morey Rossii po Dannym Sputnikovykh Skanerov Tsveta 1998–2014 gg.” [Electronic atlas "Biooptical Characteristics of the Russian Seas from Satellite Ocean Color Data of 1998-2014"]. Sovremennye Problemy Distantsionnogo Dondirovaniya Zemli iz Kosmosa, 12(6), pp. 99-110.
  5. Cota, G.F., Wang, J. and Comiso, J.C., 2004. Transformation of Global Satellite Chlorophyll Retrievals with a Regionally Tuned Algorithm. Remote Sensing of Environment, [e-journal] 90(3), pp. 373-377. doi:10.1016/j.rse.2004.01.005
  6. Tassan, S., 1994. Local Algorithms Using SeaWiFS Data for the Retrieval of Phytoplankton, Pigments, Suspended Sediment, and Yellow Substance in Coastal Waters. Applied Optics, [e-journal] 33(12), pp. 2369-2378. doi:10.1364/AO.33.002369
  7. Burenkov, V.I., Kopelevich, O.V., Sheberstov, S.V., Artemyev, V.A., Grigoriev, A.V., Ershova, S.V., Taskaev, V.R. and Khrapko, A.N. Opticheskiy Monitoring Biologicheskogo i Ekologi-cheskogo Sostoyaniya Chernogo Morya [Optical Monitoring of Biological and Ecological State of the Black Sea]. In: A. G. Zatsepin, M. F. Flint eds., 2002. Kompleksnye Issledovaniya Severo-Vostochnoy Chasti Chernogo Morya [Multidisciplinary Investigations of the Northeast Part of the Black Sea]. Moscow: Nauka, pp. 417-436 (in Russian).
  8. Lee, Z.-P. ed., 2006. Remote Sensing of Inherent Optical Properties: Fundamentals, Tests of Algorithms and Applications. Reports of the International Ocean-Colour Coordinating Group, No. 5. Canada, Dartmouth: IOCCG, 126 p. Available at: http://ioccg.org/reports/report5.pdf [Accessed: 01 November 2017].
  9. Werdell, P.J., Franz, B.A., Bailey, S.W., Feldman, G.C., Boss, E., Brando, V.E., Dowell, M., Hirata, T., Lavender, S.J. and Zhongping L. [et al.], 2013. Generalized Ocean Color Inversion Model for Retrieving Marine Inherent Optical Properties. Applied Optics, [e-journal] 52(10), pp. 2019-2037. https://doi.org/10.1364/AO.52.002019
  10. Suetin, V.S., Korolev, S.N. and Kucheryavy, A.A., 2014. Ispol'zovanie Sputnikovykh Nablyudeniy dlya Opredeleniya Spektral'nykh Zavisimostey Opticheskikh Kharakteristik Vod Chernogo Morya [Application of Satellite Observations for Determining Spectral Dependences of the Black Sea Waters Optical Characteristics]. Morskoy Gidrofizicheskiy Zhurnal, (3), pp. 77-86. Available at: http://dspace.nbuv.gov.ua/handle/123456789/105132 [Accessed: 01 November 2017] (in Russian).
  11. Suetin, V.S., Korolev, S.N. and Kucheryaviy, A.A., 2016. Sun Glint Manifestation at Evaluating the Black Sea Water Optical Parameters Using Satellite Measurements. Physical Oceanography, [e-journal] (3), pp. 47-56. doi:10.22449/1573-160X-2016-3-47-56
  12. Suetin, V.S., Korolev, S.N., Suslin, V.V. and Kucheryavyi, A.A., 2011. Comparative Analysis of the Methods Used for the Determination of the Optical Parameters of Waters in the Black Sea According to the Data of Satellite Measurements. Physical Oceanography [e-journal], 21(2), pp. 106-114. doi:10.1007/s11110-011-9108-4
  13. Suetin, V.S., Tolkachenko, G.A., Korolev, S.N. and Kucheryavy, A.A., 2013. Opticheskie Svoystva Aerozoley i Atmosfernaya Korrektsiya Sputnikovykh Nablyudeniy Chernogo Morya [Optical Features of Aerosols and Atmospheric Correction of Satellite Observations of the Black Sea]. Morskoy Gidrofizicheskiy Zhurnal, (1), pp. 34-44 (in Russian).
  14. Sydor, M., Gould, R.W., Arnone, R.A., Haltrin, V.I. and Goode, W., 2004. Uniqueness in Remote Sensing of the Inherent Optical Properties of Ocean Water. Applied Optics, [e-journal] 43(10), pp. 2156–2162. doi:10.1364/AO.43.002156
  15. Churilova, T.Ya., Suslin, V.V. and Sosik, H.M., 2002. A Spectral Model of Underwater Irradiance in the Black Sea. Physical Oceanography, [e-journal] 19(6), pp. 366-378. doi:10.1007/s11110-010-9060-8
  16. Burenkov, V.I., Kopelevich, O.V., Sheberstov, S.V., Ershova, S.V. and Evdoshenko, M.A., 1999. Bio-Optical Characteristics of the Aegean Sea Retrieved from Satellite Ocean Color Data. In: P. Malanotte-Rizzoli, V.N. Eremeev eds., 1999. The Eastern Mediterranean as a Laboratory Basin for the Assessment of Contrasting Ecosystems. NATO Science Series (Series 2: Environmental Security, vol. 51). Dordrecht: Springer, pp. 313-326. doi:10.1007/978-94-011-4796-5
  17. Organelli, E., Claustre, H., Bricaud, A., Barbieux, M., Uitz, J., D’Ortenzio, F. and Dall’Olmo, G., 2017. Bio-Optical Anomalies in the World’s Oceans: An Investigation on the Diffuse Attenuation Coefficients for Downward Irradiance Derived from Biogeochemical Argo Float Measurements. Journal of Geophysical Research: Oceans, [e-journal] 122(5), pp. 3543-3564. doi:10.1002/2016JC012629
  18. Churilova, T.Ya., Suslin, V.V. and Rylkova O.A., 2008. Parametrizatsiya Pogloshcheniya Sveta Osnovnymi Opticheski Aktivnymi Komponentami v Chernom More [Parametrization of Light Absorption by All Main Optically Active Components in the Black Sea]. In: MHI, 2008. Ekologicheskaya Bezopasnost' Pribrezhnykh i Shel'fovykh Zon i Kompleksnoe Ispol'zovanie Resursov Shel'fa [Ecological Safety of Coastal and Shelf Zones and Comprehensive Use of Shelf Resources]. Sevastopol: ECOSI-Gidrofizika. Iss. 16, pp. 190-201 (in Russian).
  19. Kopelevich, O.V., Burenkov, V.I., Ershova, S.V., Sheberstov, S.V. and Evdoshenko, M.A., 2004. Application of SeaWiFS Data for Studying Variability of Bio-Optical Characteristics in the Barents, Black and Caspian Seas. Deep Sea Research Part II: Topical Studies in Oceanography, [e-journal] 51(10-11), pp. 1063-1091. doi:10.1016/j.dsr2.2003.10.009
  20. Gregg, W.W. and Casey, N.W., 2004. Global and Regional Evaluation of the SeaWiFS Chlorophyll Data Set. Remote Sensing of Environment, [e-journal] 93(4), pp. 463-479. doi:10.1016/j.rse.2003.12.012
  21. Chavez, F.P., Strutton, P.G., Friederich, G.E., Feely, R.A., Feldman, G.C., Foley, D.G. and McPhaden, M.J., 1999. Biological and Chemical Response of the Equatorial Pacific Ocean to the 1997-98 El Niño. Science, [e-journal] 286(5447), pp. 2126-2131. doi:10.1126/science.286.5447.2126
  22. Platt, T., Hoepffner, N., Stuart, V. and Brown, C. eds., 2008. Why Ocean Colour? The Societal Benefits of Ocean-Colour Technology. Reports and Monographs of the International Ocean-Colour Coordinating Group, No. 7. Canada, Dartmouth: IOCCG, 141 p. Available at: http://ioccg.org/wp-content/uploads/2016/02/report7.pdf [Accessed: 01 November 2017].

Download the article (PDF)