Retrospective Analysis of the Black Sea Thermohaline Fields on the Basis of Empirical Orthogonal Functions

V. N. Belokopytov

Marine Hydrophysical Institute, Russian Academy of Sciences, Sevastopol, Russian Federation

e-mail: v.belokopytov@gmail.com

Abstract

Mathematical method combining optimal interpolation and expansion into the empirical orthogonal functions is developed to implement a retrospective analysis of the Black Sea thermohaline structure using incomplete archival oceanographic data. In order to increase spatial consistency of the resulted hydrologic structure, the earlier applied reconstruction method based on the horizontal empirical orthogonal functions was transformed to the combined one in which the vertical empirical orthogonal functions were the basic elements. The results of computing experiments make it possible to limit the number of the modes by 5 both for horizontal and vertical empirical orthogonal functions. Such a combination significantly reduces the calculation time and lowers the error level. This method was applied to reconstruct the monthly fields (spatial resolution is 10′ latitude × 15′ longitude) for almost a hundred-year period from 1923–2015. The relative part of the monthly average fields’ successful reconstruction constitutes about 70 %. Based on the reanalysis data, the temperature and salinity climatic fields were calculated by various methods both for the entire observational period and for certain decades. It is revealed that in the XX century the gain-phase climatic characteristics of the Black Sea remain very stable whereas general tendencies in the long-term variations of the temperature and salinity seasonal cycles are opposite: when the sea temperature seasonal range rises the phase of annual harmonic of seasonal oscillations diminishes, and in the case of salinity, it increases, i. e. the salt content maximum shifts for the later period. The reanalysis data were used to study various aspects of the inter-annual and inter-decadal variability of the Black Sea thermohaline structure, density stratification, geostrophic circulation etc. The future trends imply application of the thermohaline fields’ reanalysis array for studying long-term changes in the Black Sea basin as well as for assimilating observational data in the hydrophysical fields’ reconstructions by the hydrodanamic models.

Keywords

Black Sea, thermohaline structure, reanalysis, climate, empirical orthogonal functions

Acknowledgements

The investigation is carried out within the framework of the state task on the theme № 0827-2018-0001 “Fundamental studies of the interaction processes in the ocean-atmosphere system conditioning the regional spatial-temporal variability of natural environment and climate” (code “Ocean and atmosphere interaction”).

Original russian text

Original Russian Text © V. N. Belokopytov, 2018, published in MORSKOY GIDROFIZICHESKIY ZHURNAL, Vol. 34, Iss. 5, pp. 412–421 (2018)

For citation

Belokopytov, V.N., 2018. Retrospective Analysis of the Black Sea Thermohaline Fields on the Basis of Empirical Orthogonal Functions. Physical Oceanography, 25(5), pp. 380-389. doi:10.22449/1573-160X-2018-5-380-389

DOI

10.22449/1573-160X-2018-5-380-389

References

  1. Knysh, V.V., Korotaev, G.K., Moiseenko, V.A., Kubryakov, A.I., Belokopytov, V.N. and Inyushina, N.V., 2011. Seasonal and Interannual Variability of Black Sea Hydrophysical Fields Reconstructed from 1971–1993 Reanalysis Data. Izvestiya, Atmospheric and Oceanic Physics, [e-journal] 47(3), pp. 399-411. https://doi.org/10.1134/S000143381103008X
  2. Dorofeev, V.L., Korotaev, G.K. and Sukhikh, L.I., 2013. Study of Long-Term Variations in the Black Sea Fields Using an Interdisciplinary Physical and Biogeochemical Model. Izvestiya, Atmospheric and Oceanic Physics, [e-journal] 49(6), pp. 622-631. https://doi.org/10.1134/S0001433813060054
  3. Mizyuk, A.I., 2014. Reanaliz Gidrofizicheskikh Poley Chernogo Morya na Osnove Assimilyatsii Dannykh Izmereniy Temperatury i Solenosti v Z-Koordinatnoy Modeli [Reanalysis of the Black Sea Hydrophysical Fields Based on Temperature and Salinity Measurement Data Assimilation in the z-Coordinate Model]. Morskoy Gidrofizicheskiy Zhurnal, (3), pp. 30-47 (in Russian).
  4. Korotaev, G.K., Sarkisyan, A.S., Knysh, V.V. and Lishaev, P.N., 2016. Reanalysis of Seasonal and Interannual Variability of Black Sea Fields for 1993–2012. Izvestiya, Atmospheric and Oceanic Physics, [e-journal] 52(4), pp. 418–430. https://doi.org/10.1134/S0001433816040071
  5. Gandin, L.S., 1965. Objective Analysis of Meteorological Fields. Jerusalem: Israel Program for Scientific Translations, 242 p.
  6. Belyaev, V.I. and Timchenko, I.E., 1972. O Primenenii ob’ektivnogo i Chetyrekhmernogo Analiza v Okeanografii [On the Use of the Objective and Four-Dimensional Analysis in Oceanography]. In: MHI, 1972. Morskie Gidrofizicheskie Issledovaniya [Marine Hydrophysical Research]. Sevastopol: MHI. Iss. 2, pp. 80-92 (in Russian).
  7. Nelepo, B.A. and Timchenko, I.E., 1978. Sistemnye Printsipy Analiza Nablyudeniy v Okeane [System Principles of the Analysis of Observations in the Ocean]. Kiev: Naukova dumka, 222 p. (in Russian).
  8. Timchenko, I.E., Yarin, V.D., Vasechkina, E.F. and Igumnova, E.M., 1996. Sistemnyy Analiz Morskoy Sredy [Marine Environment Systems Analysis]. Sevastopol: MHI, 225 p. (in Russian).
  9. Reynolds, R.W., Rayner, N.A., Smith, T.M., Stokes, D.C. and Wang, W., 2002. An Improved In Situ and Satellite SST Analysis for Climate. Journal of Climate, [e-journal] 15(13), pp. 1609-1625. doi:10.1175/1520-0442(2002)015<1609:AIISAS>2.0.CO;2
  10. Kaplan, A., Cane, M.A., Kushnir, Y., Clement, A.C., Blumenthal, M.B. and Rajagopalan, B., 1998. Analyses of Global Sea Surface Temperature 1856-1991. Journal of Geophysical Research, [e-journal] 103(C9), pp. 18567-18589. doi:10.1029/97JC01736
  11. Beckers, J.M. and Rixen, M., 2003. EOF Calculations and Data Filling from Incomplete Oceanographic Datasets. Journal of Atmospheric and Oceanic Technology, [e-journal] 20(12), pp. 1839-1856. doi:10.1175/1520-0426(2003)020<1839:ECADFF>2.0.CO;2
  12. Rayner, N.A., Parker, D.E., Horton, E.B., Folland, C.K., Alexander, L.V., Rowell, D.P., Kent, E.C. and Kaplan, A., 2003. Global Analyses of Sea Surface Temperature, Sea Ice, and Night Marine Air Temperature Since the Late Nineteenth Century. Journal of Geophysical Research, [e-journal] 108(D14), 4407. doi:10.1029/2002JD002670
  13. Rayner, N.A., Brohan, P., Parker, D.E., Folland, C.K., Kennedy, J.J., Vanicek, M., Ansell, T.J. and Tett, S.F., 2006. Improved Analyses of Changes and Uncertainties in Sea Surface Temperature Measured In Situ since the Mid-Nineteenth Century: The HadSST2 Dataset. Journal of Climate, [e-journal] 19(3), pp. 446-469. https://doi.org/10.1175/JCLI3637.1
  14. Kaplan, A., Kushnir, Y. and Cane, M.A., 2000. Reduced Space Optimal Interpolation of Historical Marine Sea Level Pressure: 1854-1992. Journal of Climate, [e-journal] 13(16), pp. 2987-3002. doi:10.1175/1520-0442(2000)013<2987:RSOIOH>2.0.CO;2
  15. Alvera-Azcárate, A., Barth, A., Beckers, J.-M. and Weisberg, R.H., 2007. Multivariate Reconstruction of Missing Data in Sea Surface Temperature, Chlorophyll, and Wind Satellite Fields. Journal of Geophysical Research, [e-journal] 112(C3), C03008. doi:10.1029/2006JC003660
  16. Alvera-Azcárate, A., Barth, A., Rixen, M. and Beckers, J.M., 2005. Reconstruction of Incomplete Oceanographic Data Sets Using Empirical Orthogonal Functions: Application to the Adriatic Sea Surface Temperature. Ocean Modelling, [e-journal] 9(4), pp. 325-346. doi:10.1016/j.ocemod.2004.08.001
  17. Smith, T.M. and Reynolds, R.W., 1998. A High-Resolution Global Sea Surface Temperature Climatology for the 1961–90 Base Period. Journal of Climate, [e-journal] 11(12), pp. 3320-3323. doi:10.1175/1520-0442(1998)011<3320:AHRGSS>2.0.CO;2
  18. Alvera-Azcárate, A., Barth, A., Sirjacobs, D. and Beckers, J.-M., 2009. Enhancing Temporal Correlations in EOF Expansions for the Reconstruction of Missing Data Using DINEOF. Ocean Science, [e-journal] 5(4), pp. 475-485. doi:10.5194/os-5-475-2009
  19. Rixen, M., Beckers, J.M., Brankart, J.-M. and Brasseur, P., 2000. A Numerically Efficient Data Analysis Method with Error Map Generation. Ocean Modelling, [e-journal] 2(1-2), pp. 45-60. doi:10.1016/S1463-5003(00)00009-3
  20. Ivanov, V.A. and Belokopytov, V.N., 2013. Oceanography of the Black Sea. Sevastopol: ECOSI-Gidrofizika, 210 p. Available at: https://www.researchgate.net/publication/236853664_Ivanov_VA_Belokopytov_VN_Oceanography_of_the_Black_Sea_National_Academy_of_Sciences_of_Ukraine_Marine_Hydrophysical_Institute_Sevastopol_210_p [Accessed: 06.09.2018].
  21. Grigor’ev, A.V., Ivanov, V.A. and Kapustina, N.A., 1996. Correlation Structure of the Black Sea Thermohaline Fields in the Summer Season. Oceanology, 36(3), pp. 334-339.
  22. Polonskii, A.B. and Shokurova, I.G., 2008. Statistical Structure of the Large-Scale Fields of Temperature and Salinity in the Black Sea. Physical Oceanography, [e-journal] 18(1), pp 38-51. https://doi.org/10.1007/s11110-008-9008-4
  23. Belokopytov, V.N., 2012. O Metode Vosstanovleniya Termokhalinnoy Struktury Chernogo Morya na Osnove Empiricheskikh Ortogonal'nykh Funktsiy [On the Method for the Black Sea Thermohaline Structure Reconstruction on the Basis of Empirical Orthogonal Functions]. In: MHI, 2012. Sistemy Kontrolya Okruzhayushchey Sredy [Monitoring Systems of Environment]. Sevastopol: MHI. Iss. 17, pp. 94-99 (in Russian).
  24. Belokopytov, V.N., 2013. Metod Rascheta Sezonnogo Tsikla Termokhalinnykh Poley na Osnove EOF-Razlozheniya [Method for Calculating the Seasonal Cycle of Thermohaline Fields Based on the EOF Decomposition]. In: MHI, 2013. Sistemy Kontrolya Okruzhayushchey Sredy [Monitoring Systems of Environment]. Sevastopol: MHI. Iss. 19, pp.116-121 (in Russian).
  25. Belokopytov, V.N., 2017. Klimaticheskie Izmeneniya Gidrologicheskogo Rezhima Chernogo Morya [Climatic Changes in the Hydrological Regime of the Black Sea: Synopsis of a Doctoral Thesis, (Geogr.): 25.00.28]. Sevastopol, 42 p. (in Russian).
  26. Belokopytov, V.N., 2011. Interannual Variations of the Renewal of Waters of the Cold Intermediate Layer in the Black Sea for the Last Decades. Physical Oceanography, [e-journal] 20(5), pp. 347-355. https://doi.org/10.1007/s11110-011-9090-x
  27. Belokopytov, V.N., 2013. Klimaticheskie Izmeneniya Gidrologicheskogo Rezhima Chernogo Morya [On the Climatic Variability of the Black Sea Thermohaline Structure]. In: Ekologicheskaya Bezopasnost' Pribrezhnoy i Shel'fovoy Zon i Kompleksnoe Ispol'zovanie Resursov Shel'fa [Ecological Safety of Coastal and Shelf Zones and Comprehensive Use of Shelf Resources]. Sevastopol: MHI NANU. Iss. 27, pp. 226-230 (in Russian).

Download the article (PDF)