On Near-Horizon Maximum Brightness of Cloudless Sky

V. V. Bakhanov, A. A. Demakova, V. I. Titov

Federal Research Center Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod, Russian Federation

e-mail: titov@hydro.appl.sci-nnov.ru

Abstract

The brightness angular structure of the cloudless sky is studied based on the model of the sunlight single scattering. It is shown that the so-called near-horizon maximum of the sky brightness can be described within the framework of this model. Physical mechanism of arising of this maximum is analyzed; dependence of the maximum position on the light wavelength is explained. When the light wavelength increases, the sky brightness maximum “shifts” towards the horizon. It is related to the fact that the atmosphere optical thickness decreases with growth of a wavelength. These model data are compared to the experimental angular characteristics of the sky brightness obtained due to digital imaging of the horizon from the oceanographic platform. Possibility of estimating the atmosphere optical thickness using the angular position of the sky brightness near-horizon maximum is analyzed. Proposed is the algorithm for assessing the given characteristic for a certain value of the light wavelength based on graphical “inversion” of dependence of the angular distribution of the cloudless sky brightness upon the atmosphere optical thickness. The proposed algorithm and the horizon digital images permit to assess the atmosphere optical thickness in the R, G and B spectral ranges. The algorithm “robustness” to the errors in determining the sun azimuth relative to the observer is analyzed. The obtained estimates of the atmosphere optical thicknesses are in agreement with the known results of the nature measurements of the atmosphere analogous characteristics. The described method for reconstructing the values of the atmosphere optical thicknesses makes it possible to develop the applied sky brightness model taking into account multiple light scattering. The obtained values of optical thickness can be used in the models of angular distribution of the cloudless sky brightness to provide possibility of estimating the waves’ statistical characteristics by the remote optical method.

Keywords

atmosphere, optics, optical thickness, sky brightness, sun, scattering of light, single scattering, aerosol, wavelength of light, cloudless sky, remote sensing

Acknowledgements

The research is carried out at support of the RFFI grant No.16-05-00858а.

Original russian text

Original Russian Text © V. V. Bakhanov, A. A. Demakova, V. I. Titov, 2018, published in MORSKOY GIDROFIZICHESKIY ZHURNAL, Vol. 34, Iss. 6, pp. 477–488 (2018)

For citation

Bakhanov V. V., Demakova A. A., Titov V. I., 2018. On Near-Horizon Maximum Brightness of Cloudless Sky. Physical Oceanography, 25(6), pp. 437-447. doi:10.22449/1573-160X-2018-5-437-447

DOI

10.22449/1573-160X-2018-5-437-447

References

  1. Titov, V.I., Artamonov, A.Yu., Bakhanov, V.V., Ermakov, S.A., Luchinin, A.G., Repina, I.A. and Sergievskaja, I.A., 2014. Monitoring Sostojanija Poverhnosty Morja po Prostranstvenno-Vremennim Opticheskim Izobrajenijam [Monitoring of Sea Surface with Optical Technique]. Issledovanie Zemli iz Kosmosa, (5), pp. 3-14. doi:10.7868/S0205961414050078 (in Russian).
  2. Bakhanov, V.V., Demakova, A.A., Korinenko, A.E., Ryabkova, M.S. and Titov, V.I., 2018. Estimation of the Wind Wave Spectra with Centimeters-to-Meter Lengths by the Sea Surface Images. Physical Oceanography, [e-journal] 25(3), pp. 177-190. doi:10.22449/1573-160X-2018-3-177-190
  3. Titov, V.I., Bakhanov, V.V., Ermakov, S.A., Luchinin, A.G., Repina, I.A. and Sergievskaya, I.A., 2014. Remote Sensing Technique for Near-Surface Wind by Optical Images of Rough Water Surface. International Journal of Remote Sensing, [e-journal] 35(15), pp. 5946-5957. doi:10.1080/01431161.2014.948223
  4. Kokhanovsky, A.A., 2008. Aerosol Optics. Berlin: Springer, 154 p. https://doi.org/10.1007/978-3-540-49909-1
  5. Chapman, R.D., 1981. Visibility of RMS Slope Variations on the Sea Surface. Applied Optics, [e-journal] 20(11), pp. 1959-1966. https://doi.org/10.1364/AO.20.001959
  6. Livshitz, G.Sh., 1973. Rasseyanij Svet Dnevnogo Neba [The Scattered Light of a Day Sky]. Alma-Ata: Nauka, 148 p. (in Russian).
  7. Chapman, R.D. and Irani, G.B., 1981. Errors in Estimating Slope Spectra from Wave Images. Applied Optics, [e-journal] 20(20), pp. 3645-3652. https://doi.org/10.1364/AO.20.003645
  8. Lee, R.L., 1994. Horizon Brightness Revisited: Measurements and a Model of Clear-Sky Radiances. Applied Optics, [e-journal] 33(21), pp. 4620-4628. https://doi.org/10.1364/AO.33.004620
  9. Kokhanovsky, A.A., Breon, F.-M., Cacciari, A., Carboni, E., Diner, D., Nicolantonio, W.Di, Grainger, R.G., Grey, W.M.F., Höller, R. and Lee, K.-H [et al.], 2007. Aerosol Remote Sensing over Land: A Comparison of Satellite Retrievals Using Different Algorithms and Instruments. Atmospheric Research, [e-journal] 85(3–4), pp. 372-394. https://doi.org/10.1016/j.atmosres.2007.02.008
  10. Lee, R.L. and Samudio, O.R., 2012. Spectral Polarization of Clear and Hazy Coastal Skies. Applied Optics, [e-journal] 51(31), pp. 7499-7508. https://doi.org/10.1364/AO.51.007499
  11. Dubovik, O. and King, M.D., 2000. A Flexible Inversion Algorithm for Retrieval of Aerosol Optical Properties from Sun and Sky Radiance Measurements. JGR: Atmospheres, [e-journal] 105(D16), pp. 20673-20696. https://doi.org/10.1029/2000JD900282
  12. Masuda, K., Sasaki, M., Takashima, T. and Ishida, H., 1999. Use of Polarimetric Measurements of the Sky over the Ocean for Spectral Optical Thickness Retrievals. Journal of Atmospheric and Oceanic Technology, [e-journal] 16(7), pp. 846-859. doi:10.1175/1520-0426(1999)016<0846:UOPMOT>2.0.CO;2
  13. Mishchenko, M.I. and Travis, L.D., 1997. Satellite Retrieval of Aerosol Properties over the Ocean Using Polarization as Well as Intensity of Reflected Sunlight. JGR: Atmospheres, [e-journal] 102(D14), pp. 16989-17013. https://doi.org/10.1029/96JD02425
  14. Wang, M. and Gordon, H.R., 1994. Estimating Aerosol Optical Properties over the Oceans with the Multiangle Imaging Spectroradiometer: Some Preliminary Studies. Applied Optics, [e-journal] 33(18), pp. 4042-4057. https://doi.org/10.1364/AO.33.004042
  15. Bazalitskaya, G.P. and Livshits, G.S., 1982. Funktsii Rasseyania Sveta v Bezoblachnoj Atmosfere [Light Scattering Functions in a Cloudless Atmosphere]. Izvestiya Akademii Nauk SSSR: Fizika Atmosfery i Okeana, 18(5), pp. 551-555 (in Russian).
  16. Dolin, L.S. and Levin, I.M., 1991. Spravochnik po Teorii Podvodnogo Videnia [Handbook in the Theory of Underwater Vision]. Leningrad: Gidrometeoizdat, 229 p. (in Russian).
  17. Hasekamp, O.P. and Landgraf, J., 2007. Retrieval of Aerosol Properties over Land Surfaces: Capabilities of Multiple-Viewing-Angle Intensity and Polarization Measurements. Applied Optics, [e-journal] 46(16), pp. 3332-3344. https://doi.org/10.1364/AO.46.003332
  18. Deuzé, J.L., Bréon, F.M., Devaux, C., Goloub, P., Herman, M., Lafrance, B., Maignan, F., Marchand, A., Nadal, F., Perry, G. and Tanré, D., 2001. Remote Sensing of Aerosols over Land Surfaces from POLDER-ADEOS-1 Polarized Measurements. JGR: Atmospheres, [e-journal] 106(D5), pp. 4913-4926. https://doi.org/10.1029/2000JD900364

Download the article (PDF)