Modeling of the Biochemical Processes in the Benthic Phytocenosis of the Coastal Zone

E. F. Vasechkina, T. A. Filippova

Marine Hydrophysical Institute, Russian Academy of Sciences, Sevastopol, Russian Federation

e-mail: vasechkina.elena@gmail.com

Abstract

Introduction. A simulation model of bottom phytocenosis based on object-oriented approach to marine ecosystems was proposed.

Data and Methods. The dynamic model of macroalgae growth is based on the system of ordinary differential equations describing the processes of photosynthesis and production of organic matter, nitrogen and phosphorus uptake, and extraction of organic matter and oxygen into the environment. Photosynthetically active radiation (PAR), water temperature, a content of nutrients in the water were chosen as the control variables.

Results. The model allows an estimation of nitrogen and phosphorus content in algae tissues, rate of photosynthesis, actual parameters of uptake nutrients and extraction of organic matter depending on the control variables. Analytical solutions for the steady state of a system at constant control variables were obtained. Parameterization of photosynthetic and kinetic parameters of seaweed using their dependencies of the specific surface of thalli was proposed. The growth of red macroalga Gracilaria biomass over a year was simulated with a preset dynamics of control variables (for the Southern Coast of Crimea). Yearly oxygen production, nitrogen and phosphorus uptake and accumulated quantity of these elements in algae tissues were calculated; the volume of organic matter coming to the next trophic level (benthic organisms and finfish) was estimated. The results correspond to the published observational ecosystem data in the region under study.

Discussion and Conclusions. The developed model will be used as a separate unit simulating the dynamics of bottom phytocenosis in a three-dimensional object-oriented physical-chemical-biological model of the marine ecosystem.

Keywords

marine ecosystem, object-oriented modeling, macroalgae, photosynthesis, metabolic processes, specific surface of thalli

Acknowledgements

The investigation is carried out within the framework of the state task No. 0827-2018-0004 “Complex interdisciplinary investigations of the oceanologic processes conditioning functioning and evolution of the Black and Azov seas’ coastal zones” (code “Coastal investigations”) and partially at the RFBR grant financial support No. 18-05-80028 (code “Hazardous phenomena”).

Original russian text

Original Russian Text © E. F. Vasechkina, T. A. Filippova, 2019, published in MORSKOY GIDROFIZICHESKIY ZHURNAL, Vol. 35, Iss. 1, pp. 52–69 (2019)

For citation

Vasechkina, E.F. and Filippova, T.A., 2019. Modeling of the Biochemical Processes in the Benthic Phytocenosis of the Coastal Zone. Physical Oceanography, 26(1), pp. 47-62. doi:10.22449/1573-160X-2019-1-47-62

DOI

10.22449/1573-160X-2019-1-47-62

References

  1. Blinova, Ye.I., Saburin, M.Yu. and Belenikina, O.A., 1991. Sostoyanie Fitotsenozov i Vyrashchivanie Tsistoziry v Chernom More [The State of Phytocoenoses and Culturing of Cystoseira in the Black Sea]. Rybnoye Khoziaystvo = Fisheries, (12), pp. 42-45 (in Russian).
  2. Taylor, R.B., Peek, J.T.A. and Rees, T.A.V., 1998. Scaling of Ammonium Uptake by Seaweeds to Surface Area: Volumeratio:Geographical Variation and the Role of Uptake by Passive Diffusion. Marine Ecology Progress Series, [e-journal] 169, pp. 143-148. doi:10.3354/meps169143
  3. Rosenberg, G. and Ramus, J., 1984. Uptake of Inorganic Nitrogen and Seaweed Surface Area: Volume Ratio. Aquatic Botany, [e-journal] 19(1-2), pp. 65-72. https://doi.org/10.1016/0304- 3770(84)90008-1
  4. Popovichev, V.N. and Egorov, V.N., 2009. Kineticheskie Zakonomernosti Fosfornogo Obmena Chernomorskoy Buroy Vodorosli Cystoseira Barbata [Kinetic Regularities of Exchange of Phosphorus by the Black Sea Brown Seaweed Cystoseira Barbata]. Marine Ecological Journal, 8(1), pp. 55-66. Available at: https://repository.marine- research.org/handle/299011/1000 [Accessed: 14 January 2019] (in Russian).
  5. Hein, M., Pedersen, M.F. and Sand-Jensen, K., 1995. Size-Dependent Nitrogen Uptake in Micro- and Macroalgae. Marine Ecology Progress Series, [e-journal] 118, pp. 247-253. doi:10.3354/meps118247
  6. Nielsen, S.L. and Sand-Jensen, K., 1990. Allometric Settling of Maximal Photosynthetic Growth Rate to Surface/Volume Ratio. Limnology and Oceanography, [e-journal] 35(1), pp. 177-180. https://doi.org/10.4319/lo.1990.35.1.0177
  7. Zimmerman, R.C., Smith, R.D. and Alberte, R.S., 1987. Is Growth of Eelgrass Nitrogen Limited? A numerical Simulation of the Effects of Light and Nitrogen on the Growth Dynamics of Zostera Marina. Marine Ecology Progress Series, [e-journal] 41, pp. 167-176. Available at: https://www.int-res.com/articles/meps/41/m041p167.pdf [Accessed: 14 January 2019].
  8. Thornton, A.R., 2010. Modeling and Optimization of Algae Growth. In: SWI, 2010. Proceedings of the 72nd European Study Group Mathematics with Industry (SWI 2010, Amsterdam, The Netherlands, January 25−29, 2010). Amsterdam: Centrum voor Wiskundeen Informatica, pp. 54-85. Available at: https://pure.tue.nl/ws/portalfiles/portal/3131725/Metis246010.pdf [Accessed: 14 January 2019].
  9. Huisman, J., Matthijs, H.C.P., Visser, P.M., Balke, H., Sigon, C.A.M., Passarge, J., Weissing, F.J. and Mur, L.R., 2002. Principles of the Light-Limited Chemostat: Theory and Ecological Applications. Antonie van Leeuwenhoek, [e-journal] 81(1-4), pp. 117-133. https://doi.org/10.1023/A:1020537928216
  10. Klausmeier, C.A., Litchman, E. and Levin, S.A., 2004. Phytoplankton Growth and Stoichiometry under Multiple Nutrient Limitation. Limnology and Oceanography, [e-journal] 49(4, part 2), pp. 1463-1470. doi:10.4319/lo.2004.49.4_part_2.1463
  11. Biber, P.D., Harwell, M.A. and Cropper Jr., W.P., 2004. Modeling the Dynamics of Three Functional Groups of Macroalgae in Tropical Seagrass Habitats. Ecological Modelling, [e- journal] 175(1), pp. 25-54. https://doi.org/10.1016/j.ecolmodel.2003.10.003
  12. Kapkov, V.I., Shoshina, E.V. and Belenikina, O.A., 2016. Bioremediatsiya Morskikh Pribrezhnykh Ekosistem: Ispol'zovanie Iskusstvennykh Rifov [Bioremediation of marine coastal ecosystems: Using artificial reefs]. Vestnik of MSTU, 19(1-2), pp. 286-295. doi:10.21443/1560-9278-2016-1/2-286-295 (in Russian).
  13. Khailov, K.M., Kovardakov, S.A. and Prazukin, A.V., 2004. Biologicheskie Poverkhnosti Mnogourovnevykh Fitosistem i Raschet Ikh Chislennykh Kharakteristik [Biological Surfaces in Multilevel Plant Systems and the Estimation of Their Numerical Characters]. Marine Ecological Journal, 3(3), pp. 61-77. Available at: https://repository.marine- research.org/handle/299011/763 [Accessed: 14 January 2019] (in Russian).
  14. Wallentinus, I., 1984. Comparisons of Nutrient Uptake Rates for Baltic Macroalgae with Different Thallus Morphologies. Marine Biology, [e-journal] 80(2), pp. 215-225. https://doi.org/10.1007/BF02180189
  15. De los Santos, C.B., Pérez-Lloréns, J.L. and Vergara, J.J., 2009. Photosynthesis and Growth in Macroalgae: Linking Functional-Form and Power-Scaling Approaches. Marine Ecology Progress Series, [e-journal] 377, pp. 113-122. https://doi.org/10.3354/meps07844
  16. Vasechkina, E.F. and Yarin, V.D., 2010. Modeling of the Dynamics of Age Structure of the Populations of Free-Floating Copepods in the Black Sea. Physical Oceanography, [e-journal] 20(1), pp. 58-74. https://doi.org/10.1007/s11110-010-9067-1
  17. Atkinson, M.J. and Smith, S.V., 1983. C : N : P ratios of Benthic Marine Plants. Limnology and Oceanography, [e-journal] 28(3), pp. 568-574. https://doi.org/10.4319/lo.1983.28.3.0568
  18. Phooprong, S., Ogawa, H. and Hayashizaki, K., 2008. Photosynthetic and Respiratory Responses of Gracilaria Vermiculophylla (Ohmi) Papenfuss Collected from Kumamoto, Shizuoka and Iwate, Japan. Journal of Applied Phycology, [e-journal] 20(5), pp. 743-750. doi:10.1007/s10811-007-9253-9
  19. Droop, M.R., 1968. Vitamin B12 and Marine Ecology. IV. The Kinetics of Uptake, Growth and Inhibition of Monochrysis Lutheri. Journal of the Marine Biological Association of the United Kingdom, [e-journal] 48(3), pp. 689-733. https://doi.org/10.1017/S0025315400019238
  20. Droop, M.R., 1973. Some Thoughts on Nutrient Limitation in Algae. Journal of Phycology, [e-journal] 9(3), pp. 264-272. https://doi.org/10.1111/j.1529-8817.1973.tb04092.x
  21. Khaylov, K.M. and Burlakova, Z.P., 1968. Dinamika Vydeleniya Organicheskikh Metabolitov Morskimi Organizmami [The Dynamics of Organic Matter Release in Some Marine Organisms]. In: AS USSR, 1968. Biologiya Morya [Biology of the Sea]. Кiev: Naukova Dumka. Iss. 15, pp. 207-218 (in Russian).
  22. Barrón, C., Apostolaki, E.T. and Duarte, C.M., 2012. Dissolved Organic Carbon Release by Marine Macrophytes. Biogeosciences Discuss, [e-journal] 9, pp. 1529-1555. https://doi.org/10.5194/bgd-9-1529-2012
  23. Jensen, A.T., Uldahl, A.G., Sjøgren, K.P., Khan, M. and Pedersen, M.F., 2011. The Invasive Macroalgae Gracilaria Vermiculophylla – Effects of Salinity, Nitrogen Availability, Irradiance and Grazing on the Growth Rate : Master Thesis. Department of Environmental, Social and Spatial Change, Roskilde University, Denmark. Available at: http://agris.fao.org/agris-search/search.do?recordID=AV2012058280 [Accessed: 14 January 2019].
  24. Khaylov, K.M., Prazukin, A.V., Kovardakov, S.A. and Rygalov, V.E., 1992. Funktsional'naya Morfologiya Morskikh Mnogokletochnykh Vodorosley [Functional Morphology of Marine Multicellular Algae]. Кiev: Naukova Dumka, 280 p. Available at: https://repository.marine-research.org/handle/299011/1464 [Accessed: 14 January 2019] (in Russian).
  25. Lotze, H.K. and Schramm, W., 2000. Ecophysiological Traits Explain Species Dominance Patterns in Macroalgal Blooms. Journal of Phycology, [e-journal] 36(2), pp. 287-295. https://doi.org/10.1046/j.1529-8817.2000.99109.x
  26. Rees, T.A.V., 2003. Safety Factors and Nutrient Uptake by Seaweeds. Marine Ecology Progress Series, [e-journal] 263, pp. 29-42. doi:10.3354/meps263029
  27. Littler, M.M. and Littler, D.S., 1980. The Evolution of Thallus Form and Survival Strategies in Benthic Marine Macroalgae: Field and Laboratory Tests of a Functional Form Model. The American Naturalist, [e-journal] 116(1), pp. 25-44. doi:10.1086/283610
  28. Auby, I., 1995. Mesure de L'absorption des Nutriments (Ammonium - Nitrate - Phosphate) par les Thalles de Gracilaria Verrucosa de L'étang du Méjean. Arles, France: Station Biologiquedela Tourdu Valat, 7 p. Available at: http://archimer.ifremer.fr/doc/00148/25956/24047.pdf [Accessed: 14 January 2019].
  29. Sovga, E.E., Godin, E.A., Plastun, T.V. and Mezentseva, I.V., 2014. Otsenka Gidrokhimicheskogo Rezhima Pribrezhnykh Vod Yaltinskogo Zaliva [Assesment of Hydrochemical Regime of the Yalta Bay Coastal Waters]. Morskoy Gidrofizicheckiy Zhurnal, (3), pp. 48-59 (in Russian).
  30. Kovardakov, S.A., Kovrigina, N.P. and Izmest'eva, M.A., 2004. Donnyy Fitotsenoz v Akvatorii do Mysa Ayya i Ego Vklad v Protsessy Samoochishcheniya [Benthic Phytocenosis in the Water Area up to the Aiya Cape and its Contribution to the Self-Purification Process].In: MHI, 2004. Sistemy Kontrolya Okruzhayushchey Sredy [Monitoring Systems of Environment]. Sevastopol: MHI, pp. 250-257. Available at: https://scholar.google.ru/scholar_host?q=info:UIV8eFFhjQMJ:scholar.google.com/&output= viewport&pg=251&hl=ru&as_sdt=0,5 [Accessed: 14 January 2019] (in Russian).

Download the article (PDF)