Database of Observations of the Internal Waves in the World Ocean

A. S. Epifanova, A. V. Rybin, T. E. Moiseenko, O. E. Kurkina, A. A. Kurkin, D. Yu. Tyugin

1 Nizhny Novgorod State Technical University n. a. R. E. Alekseev, Nizhny Novgorod, Russian Federation

e-mail: aakurkin@gmail.com

Abstract

Purpose. The purpose of the paper is to describe the permanently updated public database containing the information on observations of the internal waves, as well as the scientific sources on the corresponding themes. The observations are based on the data obtained by remote sensing and direct contact measurements in various areas of the World Ocean and in the inland basins (lakes, water reservoirs).

Methods and Results. The data from 503 literature sources on the observations of internal waves are structured. The structure, format, volume and current content of the database are considered; the stored information is analyzed. Described is the process of adding and viewing the records using the IGWAtlas web application (the online project for working with the database of the observations of internal waves in the oceans and for public access to observations and sources that has an intuitive user interface). Geographical distribution of the recorded observations and their dependence on a season are illustrated. The examples of images of various types of records containing in the database, as well as their distribution according to the types of observations are given. The considered in the paper database is integrated into the IGWResearch software package intended for numerical simulation of propagation and transformation of the internal waves in the World Ocean.

Conclusions. The database contains the materials for 1972–2018 on 2296 recorded manifestations of the internal waves, which correspond to 2465 images, namely device records, satellite images, graphs, maps and tables. The database scope includes geographic information systems, statistical analysis, knowledge bases and web-services for the tasks of the World Ocean research.

Keywords

internal waves, database, the World Ocean, IGWAtlas, IGWResearch, the Black Sea

Acknowledgements

The represented results are obtained within the framework of realizing the state tasks (No. 5.4568.2017/6.7 and No. 5.1246.2017/4.6) in the sphere of scientific activities and at financial support of the grant of the President of Russian Federation aimed at state support of scientific research of the leading scientific schools of Russian Federation ST-2685.2018.5. Integration of the database on the internal waves is carried out within the framework of the Russian Scientific Foundation, project No. 17-71-10101.

Original russian text

Original Russian Text © The Authors, 2019, published in MORSKOY GIDROFIZICHESKIY ZHURNAL, Vol. 35, Iss. 4, pp. 395–403 (2019)

For citation

Epifanova, A.S., Rybin, A.V., Moiseenko, T.E., Kurkina, O.E., Kurkin, A.A. and Tyugin, D.Yu., 2019. Database of Observations of the Internal Waves in the World Ocean. Physical Oceanography, 26(4), pp.350-356. doi:10.22449/1573-160X-2019-4-350-356

DOI

10.22449/1573-160X-2019-4-350-356

References

  1. Jackson, C.R., 2004. An Atlas of Internal Solitary-Like Waves and Their Properties. Alexandria, USA: Global Ocean Associates, 560 p. Available at: https://www.internalwaveatlas.com/Atlas2_index.html [Accessed: 3 February 2019].
  2. Miropol'sky, Yu.Z., 2001. Dynamics of Internal Gravity Waves in the Ocean. Springer: Dordrecht, 406 p.
  3. Goryachkin, Yu.N., 2018. Upwelling nearby the Crimea Western Coast. Physical Oceanography, [e-journal] 25(5), pp. 368-379. doi:10.22449/1573-160X-2018-5-368-379
  4. Bazykina, A.Yu. and Dotsenko, S.F., 2016. Propagation of Tsunami-like Surface Long Waves in the Bays of a Variable Depth. Physical Oceanography, [e-journal] (4), pp. 3-11. doi:10.22449/1573-160X-2016-4-3-11
  5. Aleskerovа, A.A., Kubryakov, A.A., Goryachkin, Yu.N. and Stanichny, S.V., 2017. Propagation of Waters from the Kerch Strait in the Black Sea. Physical Oceanography, [e-journal] (6), pp. 47-57. doi:10.22449/1573-160X-2017-6-47-57
  6. Yurovskaya, M.V., Kudryavtsev, V.N., Chapron, B. and Dulov, V.A., 2014. Interpretation of Black Sea Optical Satellite Images in Sun Glitter Area. Morskoy Gidrofizicheskiy Zhurnal, (4), pp. 68-82 (in Russian).
  7. Serebryany, A.N. and Khymchenko, E.E., 2014. Observations of Internal Waves at Caucasian and Crimean Shelves of the Black Sea in Summer 2013. Sovremennye Problemy Distantsionnogo Zondirovaniya Zemli iz Kosmosa, 11(3), pp. 88-104 (in Russian).
  8. Lavrova, O. and Mityagina, M., 2017. Satellite Survey of Internal Waves in the Black and Caspian Seas. Remote Sensing, [e-journal] 9(9), 892. doi:10.3390/rs9090892
  9. Zimin, A.V., Romanenkov, D.A., Rodionov, A.A., Zhegulin, G.V. and Rodionov, M.A., 2014. Expedition Studies of the Short-Period Variability of Hydrophysical Fields in the White Sea in August 2013. Fundamentalnaya i Prikladnaya Gidrofizika, 7(1), pp. 85-91 (in Russian).
  10. Masunaga, E., Homma, H., Yamazaki, H., Fringer, O.B., Nagai, T., Kitade, Y. and Okayasu, A., 2015. Mixing and Sediment Resuspension Associated with Internal Bores in a Shallow Bay. Continental Shelf Research, [e-journal] 110, pp. 85-99. doi:10.1016/j.csr.2015.09.022.
  11. Zimin, A.V., Romanenkov, D.A., Kozlov, I.E., Chapron, B., Rodionov, A.A., Atadjanova, O.A., Myasoedov, A.G. and Collard, F., 2014. Short-Period Internal Waves in the White Sea: Operational Remote Sensing Experiment in Summer 2012. Issledovanie Zemli iz Kosmosa, (3), pp. 41-55. doi:10.7868/S0205961414030087 (in Russian).
  12. Kudryavtsev, V., Kozlov, I., Chapron, B. and Johannessen, J.A., 2014. Quad-Polarization SAR Features of Ocean Currents. Journal of Geophysical Research: Oceans, [e-journal] 119(9), pp. 6046-6065. doi:10.1002/2014jc010173
  13. Zimin, A.V., Kozlov, I.E., Atadzhanova, O.A. and Chapron, B., 2015. Complex Monitoring of Short-Period Internal Waves in the White Sea. Issledovanie Zemli iz Kosmosa, (5), pp. 51-61. doi:10.7868/S0205961415030148 (in Russian).
  14. Morozov, E.G., Kozlov, I.E., Shchuka, S.A. and Frey, D.I., 2017. Internal Tide in the Kara Gates Strait. Oceanology, [e-journal] 57(1), pp. 8-18. doi:10.1134/S0001437017010106
  15. Kim, H., Son, Y.B. and Jo, Y., 2018. Hourly Observed Internal Waves by Geostationary Ocean Color Imagery in the East/Japan Sea. Journal of Atmospheric and Oceanic Technology, [e-journal] 35(3), pp. 609-617. doi:10.1175/jtech-d-17-0049.1
  16. Novotryasov, V.V., Stepanov, D.V. and Yaroshchuk, I.O., 2016. Observations of Internal Undular Bores on the Japan/East Sea Shelf-Coastal Region. Ocean Dynamics, [e-journal] 66(1), pp. 19-25. doi:10.1007/s10236-015-0905-z
  17. Zimin, A.V., Rodionov, A.A. and Zhegulin, G.V., 2013. Short-Period Internal Waves on the White Sea Shelf: a Comparative Analysis on the Basis of Observations in Different Areas. Fundamentalnaya i Prikladnaya Gidrofizika, 6(3), pp. 19-33 (in Russian).
  18. Liao, G., Xu, X.H., Liang, C., Dong, C., Zhou, B., Ding, T., Huang, W. and Xu, D., 2014. Analysis of Kinematic Parameters of Internal Solitary Waves in the Northern South China Sea. Deep Sea Research Part I: Oceanographic Research Papers, [e-journal] 94, pp. 159-172. doi:10.1016/j.dsr.2014.10.002
  19. Teague, W.J., Carron, M.J. and Hogan, P.J., 1990. A Comparison Between the Generalized Digital Environmental Model and Levitus Climatologies. Journal of Geophysical Research: Oceans, [e-journal] 95(C5), pp. 7167-7183. doi:10.1029/JC095iC05p07167
  20. Tyugin, D.Yu., Kurkina, O.E. and Kurkin, A.A., 2011. Software Package for Modeling of Internal Gravity Waves in the World Ocean. Fundamentalnaya i Prikladnaya Gidrofizika, 4(2), pp. 32-44 (in Russian).
  21. Tyugin, D.Yu., Kurkin, A.A., Pelinovsky, E.N. and Kurkina, O.E., 2012. Increase of Productivity of the Program Complex for Modeling of Internal Gravity Waves IGW Research with the Help of Intel® Parallel Studio XE 2013. Fundamentalnaya i Prikladnaya Gidrofizika, 5(3), pp. 89-95 (in Russian).
  22. Pelinovsky, E.N., Talipova, T.G., Soomere, T., Kurkina, O.E., Kurkin, A.A. and Tyugin, D.Yu., 2018. Modelling of Internal Waves in the Baltic Sea. Fundamentalnaya i Prikladnaya Gidrofizika, 11(2), pp. 8-20. doi:10.7868/S2073667318020016

Download the article (PDF)