Investigation of the Barents Sea Upper Layer Response to the Polar Low in 1975

N. A. Diansky1, 2, 3, I. I. Panasenkova4, ✉, V. V. Fomin2, 4

1 Lomonosov Moscow State University, Moscow, Russian Federation

2 Marchuk Institute of Numerical Mathematics, Russian Academy of Sciences, Moscow, Russian Federation

3 Marine Hydrophysical Institute, Russian Academy of Sciences, Sevastopol, Russian Federation

4 Zubov State Oceanographic Institute, Moscow, Russian Federation

e-mail: ipanasenkova@mail.ru

Abstract

Purpose. The present paper is focused on reproducing the extreme polar low observed over the Barents Sea in early January 1975, on the metocean hindcast data and on analyzing the upper sea layer response to the cyclone passage.

Methods and Results. All the calculations are carried out based on the Marine and Atmospheric Research System for simulating hydrometeorological characteristics of the western seas in the Russian Arctic (the Barents, White, Pechora and Kara seas). The main components of this system are the regional non-hydrostatic model of atmospheric circulation WRF (spatial resolution is 15 km) and the physically complete three-dimensional σ-model of marine circulation INMOM (spatial resolution is 2.7 km). The atmospheric reanalysis data and the results of previous studies are used. The polar low produced a severe impact on the central and eastern parts of the Barents Sea, namely, being strongly influenced by the storm winds, the near-surface current velocities changed significantly. During a storm period in these parts of the Barents Sea, the drift component prevails over the tidal one. The tidal component prevails in the shallow southern part of the Barents Sea even during the most extreme storm period. It is shown that a polar low can lead to increase of the sea surface temperature in the Barents Sea by more than 1°С.

Conclusions. The sea surface temperature positive anomaly is formed by the dynamic processes associated with vertical mixing, upwelling in the western and central parts of the Barents Sea, the Ekman drift and downwelling near the Novaya Zemlya coast. Contribution of the sea-atmosphere heat exchange to formation of the surface temperature positive anomalies is negligible. On the contrary, in the southern part of the Barents Sea and in the Pechora Sea, a significant surface temperature decrease (by almost 1.5°С) is observed during a polar low passing. This is a result of the sea upper layer cooling due to the heat transfer from the sea surface to the atmosphere.

Keywords

Arctic seas, extreme storm, ocean circulation, sea surface temperature anomaly

Acknowledgements

The authors are grateful to S.K. Gulev, V.V. Ivanov, G.K. Korotaev for their valuable comments while preparing the paper. The work was supported by the Russian Science Foundation (grant No 17-77-30001).

Original russian text

Original Russian Text © N.A. Diansky, I.I. Panasenkova, V.V. Fomin, 2019, published in MORSKOY GIDROFIZICHESKIY ZHURNAL, Vol. 35, Iss. 6, pp. 530–548 (2019)

For citation

Diansky, N.A., Panasenkova, I.I. and Fomin, V.V., 2019. Investigation of the Barents Sea Upper Layer Response to the Polar Low in 1975. Physical Oceanography, 26(6), pp. 467-483. doi:10.22449/1573-160X-2019-6-467-483

DOI

10.22449/1573-160X-2019-6-467-483

References

  1. Nikitin, M.A., Rivin, G.S., Rozinkina, I.A. and Chumakov, M.M., 2015. [Polar Lows Identification Under the Kara Sea Using Numerical Modelling]. Vesti Gazovoy Nayki, (2), pp. 106-112. Available at: http://www.vesti-gas.ru/sites/default/files/attachments/vgn-2-22- 2015-106-112.pdf [Accessed: 25 July 2019] (in Russian).
  2. Rasmussen, E. and Turner, J., eds. 2003. Polar Lows: Mesoscale Weather Systems in the Polar Regions. Cambridge, UK: Cambridge University Press. 612 p. doi:10.1017/CBO9780511524974
  3. Rinke, A., Maturilli, M., Graham, R.M., Matthes, H., Handorf, D., Cohen, L., Hudson, S.R. and Moore, J.C., 2017. Extreme Cyclone Events in the Arctic: Wintertime Variability and Trends. Environmental Research Letters, [e-journal] 12(9), 094006. doi:10.1088/1748-9326/aa7def
  4. Heinemann, G. and Saetra, Ø., 2013. Workshop on Polar Lows. Bulletin of the American Meteorological Society, [e-journal] 94(9), pp. ES123–ES126. doi:10.1175/BAMS-D-12-00190.1
  5. Walker, N.D., Leben, R.R. and Balasubramanian, S., 2005. Hurricane-Forced Upwelling and Chlorophyll-a Enhancement within Cold-Core Cyclones in the Gulf of Mexico. Geophysical Research Letters, [e-journal] 32(18), L18610. doi:10.1029/2005GL023716
  6. Trenberth, K.E., Cheng, L., Jacobs, P., Zhang, Y. and Fasullo, J., 2018. Hurricane Harvey links to Ocean Heat Content and Climate Change Adaptation. Earth’s Future, [e-journal] 6(5), pp. 730-744. doi:10.1029/2018EF000825
  7. Yang, B., Hou, Y., Hu, P., Liu, Z. and Liu, Y., 2015. Shallow Ocean Response to Tropical Cyclones Observed on the Continental Shelf of the Northwestern South China Sea. Journal of Geophysical Research: Oceans, [e-journal] 120(5), pp. 3817-3836. doi:10.1002/2015JC010783
  8. Yang, B., Hou, Y. and Li, M., 2019. Response of the Western North Pacific Subtropical Ocean to the Slow-Moving Super Typhoon Nanmadol. Journal of Oceanology and Limnology, [e-journal] 37(3), pp. 938-956. doi:10.1007/s00343-019-8114-0
  9. Jullien, S., Menkes, C.E., Marchesiello, P., Jourdain, N.C., Lengaigne, M., Koch-Larrouy, A., Lefèvre, J., Vincent, E.M. and Faure, V., 2012. Impact of Tropical Cyclones on the Heat Budget of the South Pacific Ocean. Journal of Physical Oceanography, [e-journal] 42(11), pp.1882-1906. doi:10.1175/JPO-D-11-0133.1
  10. Pei, Y.H., Zhang, R.H. and Chen, D.K., 2008. Upper Ocean Response to Tropical Cyclone Wind Forcing: A Case Study of Typhoon Rammasun (2008). Science China Earth Sciences, [e-journal] 58(9), pp. 1623-1632. doi:10.1007/s11430-015-5127-1
  11. Mathew, S., Natesan, U., Latha, G., Venkatesan, R., Rao, R.R. and Ravichandran, M., 2018. Observed Warming of Sea Surface Temperature in Response to Tropical Cyclone Thane in the Bay of Bengal. Current Science, [e-journal] 114(7), pp. 1407-1413. doi:10.18520/cs/v114/i07/1407-1413
  12. Yarovaya, D.A., Efimov, V.V., Barabanov, V.S. and Mizyuk A.A., 2020. Disturbances of the Black Sea Upper Layer Caused by the Passage of the Quasi-Tropical Cyclone on September, 25-29, 2005. Russian Meteorology and Hydrology (in press).
  13. Saetra, O., Linders, T. and Debernard, J.B., 2008. Can Polar Lows Lead to a Warming of the Ocean Surface? Tellus A: Dynamic Meteorology and Oceanography, [e-journal] 60(1), pp. 141-153. doi:10.1111/j.1600-0870.2007.00279.x
  14. Linders, T., Saetra, Ø. and Bracegirdle, T.J., 2011. Limited Polar Low Sensitivity to Sea‐Surface Temperature. Quarterly Journal of the Royal Meteorological Society, [e-journal] 137(654), pp. 58-69. doi:10.1002/qj.718
  15. Blunden, J. and Arndt, D.S., 2015. State of the Climate in 2014. Bulletin of the American Meteorological Society, [e-journal] 96(7), pp. ES1-ES32. doi:10.1175/2015BAMSStateoftheClimate.1
  16. Blunden, J. and Arndt, D.S., 2016. State of the Climate in 2015. Bulletin of the American Meteorological Society, [e-journal] 97(8), pp. S1–S275. doi:10.1175/2016BAMSStateoftheClimate.1
  17. Hausfather, Z., Cowtan, K., Clarke, D.C., Jacobs, P., Richardson, M. and Rohde, R., 2017. Assessing Recent Warming Using Instrumentally Homogeneous Sea Surface Temperature Records. Science Advances, [e-journal] 3(1), e1601207. doi:10.1126/sciadv.1601207
  18. Zahn, M. and von Storch, H., 2008. A long-Term Climatology of North Atlantic Polar Lows. Geophysical Research Letters, [e-journal] 35(22), L22702. doi:10.1029/2008GL035769
  19. Zahn, M. and von Storch, H., 2010. Decreased Frequency of North Atlantic Polar Lows Associated with Future Climate Warming. Nature, [e-journal] 467(7313), pp. 309-312. doi:10.1038/nature09388
  20. Diansky, N.A., Kabatchenko, I.M., Fomin, V.V., Panasenkova, I.I. and Reznikov, M.V., 2018. A Marine and Atmospheric Research System for Simulating Hydrometeorological Characteristics and Wing Waves in the Western Seas of Russian Arctic, and Simulation of the Extreme Storm of 1975 in Barents Sea with Ice Conditions. Vesti Gazovoy Nauki, (4), pp. 156-165. Available at: http://vesti-gas.ru/sites/default/files/attachments/vgn-4-36-2018- 156-165.pdf [Accessed: 25 July 2019] (in Russian).
  21. Vasil'ev, K.P. ed., 1982. [A Collection of Maps and Descriptions of Typical Atmospheric Processes Causing the Occurrence of Dangerous and Extremely Dangerous Hydrometeorological Phenomena in the Barents, the Norwegian and Greenland Seas]. Moscow: VNIIGMI-MTsD, 136 p. (in Russian).
  22. Gusev, A.V. and Diansky, N.A., 2014. Numerical Simulation of the World Ocean Circulation and Its Climatic Variability for 1948-2007 Using the INMOM. Izvestiya, Atmospheric and Oceanic Physics, [e-journal] 50(1), pp. 1-12. doi:10.1134/S0001433813060078
  23. Popov, S.K. and Lobov, A.L., 2017. Diagnosis and Forecast of the Caspian Sea Level with the Operational Hydrodynamic Model. Russian Meteorology and Hydrology, [e-journal] 42(9), pp. 607-614. doi:10.3103/S1068373917090084
  24. Popov, S.K., Lobov, A.L., Elisov, V.V. and Batov V.I., 2013. A Tide in the Operational Model for Short-Range Forecast of Current Velocity and Sea Level in the Barents and White Seas. Russian Meteorology and Hydrology, [e-journal] 38(6), pp. 414-425. doi:10.3103/S106837391306006X
  25. Nikitin, M.A., Rivin, G.S., Rozinkina, I.A. and Chumakov, M.M., 2016. Use of COSMO-Ru Forecasting System for Polar Low’s Research: Case Study 25−27 March 2014. In: V. V. Ivanov, 2016. Proceedings of Hydrometcentre of Russia. Moscow, Hydrometcentre of Russia. Issue 361, pp. 128-145 (in Russian).
  26. Mironov, Ye.U., Smirnov, V.G., Bychkova, I.A., Kulakov, M.Yu. and Demchev, D.M., 2015. Modern Technologies for Iceberg Detection and Their Drift Forecasting in the Western Arctic. Arctic and Antarctic Research, (2), pp. 21-32. Available at: http://www.aari.ru/misc/publicat/paa/PAA-104/PAA-104_021-032.pdf [Accessed: 25 July 2019] (in Russian).
  27. Kulakov, M.Yu., Makshtas, A.P. and Shutilin, S.V., 2012. AARI–IOCM – Coupled Ice– Ocean Circulation Model for the Arctic Ocean. Arctic and Antarctic Research, (2), pp. 6-18 (in Russian).
  28. Sakov, P., Counillon, F., Bertino, L., Lisæter, K.A., Oke, P.R. and Korablev, A., 2012. TOPAZ4: an Ocean-Sea Ice Data Assimilation System for the North Atlantic and Arctic. Ocean Science, [e-journal] 8(4), pp. 633-656. https://doi.org/10.5194/os-8-633-2012
  29. Skamarock, W.C., Klemp, J.B., Dudhia, J., Gill, D.O., Barker, D.M., Duda, M.G., Huang, X.-Yu, Wang, W. and Powers, J.G., 2008. A Description of the Advanced Research WRF Version 3. NCAR Technical Notes. Boulder, Colorado: National Center for Atmospheric Research USA, 113 p. Available at: https://opensky.ucar.edu/islandora/object/technotes%3A500/datastream/PDF/view [Accessed: 25 July 2019].
  30. Diansky, N.A., 2013. [Modeling the Ocean Circulation and Study of Its Response to Short- and Long-Period Atmospheric Influences]. Moscow: Fizmatlit, 272 p.
  31. Moshonkin, S., Zalesny, V. and Gusev, A., 2018. Simulation of the Arctic–North Atlantic Ocean Circulation with a Two-Equation K-Omega Turbulence Parameterization. Journal of Marine Science and Engineering, [e-journal] 6(3), 95. doi:10.3390/jmse6030095
  32. Zalesnyi, V.B., 1998. Numerical Modeling of the World Ocean Thermohaline Circulation. Russian Meteorology and Hydrology, (2), p. 32-40.
  33. Kabatchenko, I.M., Matushevskii, G.V., Reznikov, M.V. and Zaslavskii, M.M., 2001. Numerical Modelling of Wind and Waves in a Secondary Cyclone at the Black Sea. Russian Meteorology and Hydrology, (5), p. 45-53.
  34. Efimov, V.V. and Komarovskaya, O.I., 2017. Formation of the Novaya Zemlya Bora. Physical Oceanography, [e-journal] (2), pp. 3-10. doi:10.22449/1573-160X-2017-2-3-10
  35. Gruzinov, V.M., Diansky, N.A., Kabatchenko, I.M. and Fomin, V.V., 2014. Simulation of Circulation of the Kara and Pechora Seas through the System of Express Diagnosis and Prognosis of Marine Dynamics. Arctic: Ecology and Economy, 1(13), pp. 57-73 (in Russian).
  36. Locarnini, R.A., Mishonov, A.V., Antonov, J.I., Boyer, T.P., Garcia, H.E., Baranova, O.K., Zweng, M.M., Paver, C.R., Reagan, J.R., Johnson, D.R., Hamilton, M. and Seidov, D., 2013. World Ocean Atlas 2013, Volume 1: Temperature. NOAA Atlas NESDIS 73. Silver Spring, MD: NODC, 40 p. doi:10.7289/V55X26VD
  37. Papritz, L. and Spengler, T., 2017. A Lagrangian Climatology of Wintertime Cold Air Outbreaks in the Irminger and Nordic Seas and Their Role in Shaping Air-Sea Heat Fluxes. Journal of Climate, [e-journal] 30(8), pp. 2717-2737. doi:10.1175/JCLI-D-16-0605.1
  38. Carscadden, J.E., Gjøsæter, H. and Vilhjálmsson, H., 2013. A Comparison of Recent Changes in Distribution of Capelin (Mallotus Villosus) in the Barents Sea, around Iceland and in the Northwest Atlantic. Progress in Oceanography, [e-journal] 114, pp. 64-83. doi:10.1016/j.pocean.2013.05.005
  39. Terziev, F.S., Girdyuk, G.V., Zukova, G.G. and Dzhenyuk, S.L., eds., 1990. [Hydrometeorology and Hydrochemistry of the Seas of the USSR. Vol. 1: Barents Sea. No. 1: Hydrometeorological Conditions]. Leningrad: Gidrometeoizdat, 280 p. (in Russian).
  40. Price, J.F., 1981. Upper Ocean Response to a Hurricane. Journal of Physical Oceanography, [e-journal] 11(2), pp. 153-175. doi:10.1175/1520-0485(1981)011<0153:UORTAH>2.0.CO;2
  41. Schauer, U., Loeng, H., Rudels, B., Ozhigin, V.K. and Dieck, W., 2002. Atlantic Water Flow through the Barents and Kara Seas. Deep-Sea Research Part I: Oceanographic Research Papers, [e-journal] 49(12), pp. 2281-2298. doi:10.1016/S0967-0637(02)00125-5
  42. Makhotin, M.S., and Ivanov, V.V., 2016. Circulation of the Atlantic Water in the Barents Sea Based on Hydrological Survey Data and Numerical Simulation. In: V. V. Ivanov, 2016. Proceedings of Hydrometcentre of Russia. Moscow: Hydrometcentre of Russia. Issue 361, pp. 169-191 (in Russian).
  43. Nesterov, E.S, 2018. Extreme Cyclones over the Seas of the European Part of Russia. Hydrometeorological Research and Forecasting, 1(367). С. 97-115. Available at: http://method.meteorf.ru/publ/tr/tr367/05.pdf [Accessed: 25 July 2019].
  44. Jaimes, B. and Shay, L.K., 2015. Enhanced Wind-Driven Downwelling Flow in Warm Oceanic Eddy Features during the Intensification of Tropical Cyclone Isaac (2012): Observations and Theory. Journal of Physical Oceanography, [e-journal] 45(6), pp. 1667-1689. doi:10.1175/JPO-D-14-0176.1
  45. Gill, A.E., 1982. Atmosphere-Ocean Dynamics. International Geophysics Series, vol. 30. London: Academic Press, 662 p.

Download the article (PDF)