Interaction of Dense Shelf Waters of the Barents and Kara Seas with the Eddy Structures

G. A. Platov1, 2, ✉, E. N. Golubeva1, 2

1 Institute of Computational Mathematics and Mathematical Geophysics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russian Federation

2 Novosibirsk National Research State University, Novosibirsk, Russian Federation

e-mail: platov.g@gmail.com

Abstract

Purpose. Considered are the processes of dense bottom water formation in winter in the region of the Novaya Zemlya northwestern coast, its further propagation (cascading) towards the St. Anna trough and then to the open ocean. The goal of the paper is to show that the process of such propagation is closely related to generation of the mesoscale eddies.

Methods and Results. The data of available measurements indicate only some residual forms of such a movement, since they cover mainly a summer season. Numerical study was carried out using the system of the nested models SibCIOM and SibPOM. In course of the numerical experiments it became possible to show the system capability in describing the water bottom structure and to reproduce the process of bottom water propagation in details. Analysis of the above-mentioned process has revealed energy conversion of the available potential energy of a regular motion into the potential energy of eddy formations. The eddy structures’ ageostrophicity, in its turn, contributes to the accelerated advancement of dense shelf waters downard along the sloping bottom.

Conclusions. One of the important features of cascading is that at the initial stage, it is accompanied by active generation of the mesoscale eddy structures. Both processes interact energetically and contribute to increase of heat and mass exchange between the shelf and the open ocean. Proper description of this exchange is a prerequisite for successful modeling of the intermediate and deep water thermodynamics in the Arctic Ocean.

Keywords

Arctic Ocean, Kara Sea, formation of water masses, cascading, mesoscale eddy

Acknowledgements

The work was carried out at support of the Russian Foundation for Basic Research, grant No 17-05-00382, and using resources of the Center for Collective Use “Siberian Supercomputer Center” ICMMG SB RAS.

Original russian text

Original Russian Text © G.A. Platov, E.N. Golubeva, 2019, published in MORSKOY GIDROFIZICHESKIY ZHURNAL, Vol. 35, Iss. 6, pp. 549–571 (2019)

For citation

Platov, G.A. and Golubeva, E.N., 2019. Interaction of Dense Shelf Waters of the Barents and Kara Seas with the Eddy Structures. Physical Oceanography, [e-journal] 26(6), pp. 484-503. doi:10.22449/1573-160X-2019-6-484-503

DOI

10.22449/1573-160X-2019-6-484-503

References

  1. Martin, S. and Cavalieri, D.J., 1989. Contributions of the Siberian Shelf Polynyas to the Arctic Ocean Intermediate and Deep Water. Journal of Geophysical Research: Oceans, [e-journal] 94(C9), pp. 12725-12738. doi:10.1029/JC094iC09p12725
  2. Schauer, U., 1995. The Release of Brine-Enriched Shelf Water from Storfjord into the Norwegian Sea. Journal of Geophysical Research: Oceans, [e-journal] 100(C8), pp.16015-16028. doi:10.1029/95JC01184
  3. Winsor, P. and Björk, G., 2000. Polynya Activity in the Arctic Ocean from 1958 to 1997. Journal of Geophysical Research: Oceans, [e-journal] 105(C4), pp. 8789-8803. doi:10.1029/1999JC900305
  4. Årthun, M., Ingvaldsen, R.B., Smedsrud, L.H. and Schrum, C., 2011. Dense Water Formation and Circulation in the Barents Sea. Deep Sea Research Part I: Oceanographic Research Papers, [e-journal] 58(8), pp. 801-817. doi:10.1016/j.dsr.2011.06.001
  5. Schauer, U., Loeng, H., Rudels, B., Ozhigin, V. K. and Dieck, W., 2002. Atlantic Water Flow through the Barents and Kara Seas. Deep Sea Research Part I: Oceanographic Research Papers, [e-journal] 49(12), pp. 2281-2298. doi:10.1016/S0967-0637(02)00125-5
  6. Rudels, B., 1987. On the Mass Balance of the Polar Ocean, with Special Emphasis on the Fram Strait. Norsk Polarinstitutt Skrifter 188. Oslo: Norsk Polarinstitutt, pp. 1-53. Available at: https://brage.npolar.no/npolar-xmlui/bitstream/handle/11250/173528/Skrifter188.pdf?sequence=1&isAllowed=y [Accessed: 10 December 2019].
  7. Harms, I.H., 1997. Water Mass Transformation in the Barents Sea – Application of the Hamburg Shelf Ocean Model (HamSOM). ICES Journal of Marine Science, [e-journal] 54(3), pp. 351-365. doi:10.1006/jmsc.1997.0226
  8. Backhaus, J.O., Fohrmann, H., Kämpf, J. and Rubino, A., 1997. Formation and Export of Water Masses Produced in Arctic Shelf Polynyas – Process Studies of Oceanic Convection. ICES Journal of Marine Science, [e-journal] 54(3), pp. 366-382. doi:10.1006/jmsc.1997.0230
  9. Ellingsen, I., Slagstad, D. and Sundfjord, A., 2009. Modification of Water Masses in the Barents Sea and Its Coupling to Ice Dynamics: a Model Study. Ocean Dynamics, [e- journal] 59(6), pp. 1095-1108. doi:10.1007/s10236-009-0230-5
  10. Iakovlev, N.G., 2012. On the Simulation of Temperature and Salinity Fields in the Arctic Ocean. Izvestiya, Atmospheric and Oceanic Physics, [e-journal] 48(1), pp. 86-101. doi:10.1134/S0001433812010136
  11. Luneva, M., Myers, P., Ivanov, V., Aksenov, Y., Dukhovskoy, D., Golubeva, E., Platov, G., Wang, Q. and Zhang, W., 2019. Evaluation of Dense Water Cascading and Cross-Shelf Exchange in the Arctic Ocean: Inter-Comparison Project. Geophysical Research Abstracts, 21, EGU2019-5567. Available at: https://meetingorganizer.copernicus.org/EGU2019/EGU2019- 5567.pdf [Accessed: 10 December 2019].
  12. Large, W.G. and Yeager, S.G., 2009. The Global Climatology of an Interannually Varying Air-Sea Flux Data Set. Climate Dynamics, [e-journal] 33(2-3), pp. 341-364. doi:10.1007/s00382-008-0441-3
  13. Proshutinsky, A., Steele, M. and Timmermans, M.-L., 2016. Forum for Arctic Modeling and Observational Synthesis (FAMOS): Past, Current, and Future Activities. Journal of Geophysical Research: Oceans, [e-journal] 121(6), pp. 3803-3819. doi:10.1002/2016JC011898
  14. Uotila, P., Holland, D.M., Morales Maqueda, M.A., Häkkinen, S., Holloway, G., Karcher, M., Kauker, F., Steele, M., Yakovlev, N., Zhang, J. and Proshutinsky A., 2006. An Energy- Diagnostics Intercomparison of Coupled Ice-Ocean Arctic Models. Ocean Modelling, [e- journal] 11(1-2), pp. 1-27. doi:10.1016/j.ocemod.2004.11.003
  15. Ilıcak, M., Drange, H., Wang, Q., Gerdes, R., Aksenov, Y., Bailey, D., Bentsen, M., Biastoch, A., Bozec, A. [et al.], 2016. An Assessment of the Arctic Ocean in a Suite of Interannual CORE-II Simulations. Part III: Hydrography and fluxes. Ocean Modelling, [e-journal] 100, pp. 141-161. doi:10.1016/j.ocemod.2016.02.004
  16. Platov, G.A., 2011. Numerical Modeling of the Arctic Ocean Deepwater Formation: Part II. Results of Regional and Global Experiments. Izvestiya, Atmospheric and Oceanic Physics, [e- journal] 47(3), pp. 377-392. doi:10.1134/S0001433811020083
  17. Zalesny, V.B. and Tamsalu, R., 2009. High-Resolution Modeling of a Marine Ecosystem Using the FRESCO Hydroecological Model. Izvestiya, Atmospheric and Oceanic Physics, [e- journal] 45(1), pp. 102-115. doi:10.1134/S0001433809010071
  18. Golubeva, E.N., 2008. Numerical Modeling of the Atlantic Water Circulation in the Arctic Ocean using QUICKEST Scheme. Computational Technologies, 13(5), pp. 11-24 (in Russian).
  19. Golubeva, E.N. and Platov, G.A., 2009. Numerical Modeling of the Arctic Ocean Ice System Response to Variations in the Atmospheric Circulation from 1948 to 2007. Izvestiya, Atmospheric and Oceanic Physics, [e-journal] 45(1), pp. 137-151. doi:10.1134/S0001433809010095
  20. Marchuk, G.I., Zalesny, V.B. and Kuzin, V.I., 1975. On the Finite Difference and Finite Element Methods in the Global Wind-Driven Ocean Circulation. Izvestiya, Atmospheric and Oceanic Physics, 11(12), pp. 1294-1300 (in Russian).
  21. Marchuk, G.I. and Kuzin, V.I., 1983. On the Combination of Finite Element and Splitting-up Methods in the Solution of Parabolic Equations. Journal of Computational Physics, [e- journal] 52(2), pp. 237-272. doi:10.1016/0021-9991(83)90030-X
  22. Leonard, B.P., Lock, A.P. and MacVean, M.K., 1996. Conservative Explicit Unrestricted- Time-Step Multidimensional Constancy-Preserving Advection Schemes. Monthly Weather Review, [e-journal] 124(11), pp. 2588-2606. doi:10.1175/1520- 0493(1996)124<2588:CEUTSM>2.0.CO;2
  23. Golubeva, E.N., Ivanov, Ju.A., Kuzin, V.I. and Platov, G.A., 1992. Numerical Modeling of the World Ocean Circulation with the Upper Mixed-Layer Parameterization. Oceanology, 32(3), pp. 395-405 (in Russian).
  24. Hunke, E.C. and Dukowicz, J.K., 1997. An Elastic-Viscous-Plastic Model for Sea Ice Dynamics. Journal of Physical Oceanography, [e-journal] 27(9), pp. 1849-1867. doi:10.1175/1520-0485(1997)027<1849:AEVPMF>2.0.CO;2
  25. Bitz, C.M. and Lipscomb, W.H., 1999. An Energy-Conserving Thermodynamic Model of Sea Ice. Journal of Geophysical Research: Oceans, [e-journal] 104(C7), pp. 15669-15677. doi:10.1029/1999JC900100
  26. Lipscomb, W.H. and Hunke, E.C., 2004. Modeling Sea Ice Transport Using Incremental Remapping. Monthly Weather Review, [e-journal] 132(6), pp. 1341-1354. doi:10.1175/1520- 0493(2004)132<1341:MSITUI>2.0.CO;2
  27. Blumberg, A.F. and Mellor, G.L., 1987. A Description of a Three-Dimensional Coastal Ocean Circulation Model. In: N. S. Heaps (ed.), 2013. Three-Dimensional Coastal Ocean Models. Washington, D.C.: American Geophysical Union, pp. 1-16.
  28. Platov, G.A. and Middleton, J.F.F, 2001. Notes on Pressure Gradient Correction. Bulletin of the Novosibirsk Computing Center, (7), pp. 43-58. Available at: https://nccbulletin.ru/files/article/platov_3.pdf [Accessed: 10.12.2019].
  29. Atadzhanova, O.A., Zimin, A.V., Romanenkov, D.A. and Kozlov, I.E., 2017. Satellite Radar Observations of Small Eddies in the White, Barents and Kara Seas. Physical Oceanography, [e-journal] (2), pp. 75-83. doi:10.22449/1573-160X-2017-2-75-83
  30. Kulakov, M.Yu., 2012. About the New Approach to Modelling of Water Circulation of the Arctic Seas. Arctic and Antarctic Research, (2), pp. 55-62. Available at: http://www.aari.ru/misc/publicat/paa/PAA-92/PAA92-06(55-62).pdf [Accessed: 10.12.2019] (in Russian).
  31. Harms, I.H. and Karcher, M.J., 1999. Modeling the Seasonal Variability of Hydrography and Circulation in the Kara Sea. Journal of Geophysical Research: Oceans, [e-journal] 104(C6), pp. 13431-13448. doi:10.1029/1999JC900048
  32. Doronin, N.Y., 1983. [Simulation of the Barotropic Circulation in the Kara Sea]. In: AARI, 1983. Proceedings of AARI. Saint Petersburg: AARI. Issue 380, pp. 54-62 (in Russian).
  33. Doronin, N.Y., 1985. [Generalized Two-Layer Model of the Kara Sea Circulation]. In: AARI, 1985. Proceedings of AARI. Saint Petersburg: AARI. Issue 389, pp. 15-23 (in Russian).
  34. Doronin, N.Y., Kuznetcov, V.L. and Proshutinsky, A.Y., 1991. [Circulation of the Water Masses in the Kara Sea]. In: AARI, 1991. Proceedings of AARI. Saint Petersburg: AARI. Issue 424, pp. 34-41 (in Russian).
  35. Dmitrenko, I.A., Rudels, B., Kirillov, S.A., Aksenov, Y.O., Lien, V.S., Ivanov, V.V., Schauer, U., Polyakov, I.V., Coward, A., Coward, A. and Barber, D.G., 2015. Atlantic Water Flow into the Arctic Ocean through the St. Anna Trough in the Northern Kara Sea. Journal of Geophysical Research: Oceans, [e-journal] 120(7), pp. 5158-5178. doi:10.1002/2015JC010804
  36. Uralov, N.S., 1960. [On the Advective Component of the Heat Balance of the Barents Sea Southern Half]. In: SOI, 1960. SOI Proceedings. Leningrad: SOI. Issue 55, pp. 3-20 (in Russian).
  37. Yakovlev, N.G., 1998. Modeling the Atlantic Water Diffusion in the Arctic Ocean. Russian Meteorology and Hydrology, (2), pp. 47-56.
  38. Pavlov, V.K. and Pfirman, S.L., 1995. Hydrographic Structure and Variability of the Kara Sea: Implification for Pollutant Distribution. Deep Sea Research Part II: Topical Studies in Oceanography, [e-journal] 42(6), pp. 1369-1390. doi:10.1016/0967-0645(95)00046-1
  39. Panteleev, G., Proshutinsky, A., Kulakov, M., Nechaev, D.A. and Maslowski, W., 2007. Investigation of the Summer Kara Sea Circulation Employing a Variational Data Assimilation Technique. Journal of Geophysical Research: Oceans, [e-journal] 112(C4), C04S15. doi:10.1029/2006JC003728
  40. Kaurkin, M.N., Ibrayev, R.A. and Belyaev, K.P., 2016. Data Assimilation in the Ocean Circulation Model of High Spatial Resolution Using the Methods of Parallel Programming. Russian Meteorology and Hydrology, [e-journal] 41(7), pp. 479-486. doi:10.3103/S1068373916070050
  41. Stepanov, D.V., 2018. Mesoscale Eddies and Baroclinic Instability over the Eastern Sakhalin Shelf of the Sea of Okhotsk: a Model-Based Analysis. Ocean Dynamics, [e-journal] 68(10), pp. 1353-1370. doi:10.1007/s10236-018-1192-2
  42. Ivanov, V.V., Shapiro, G.I., Huthnance, J.M., Aleynik, D.L. and Golovin, P.N., 2004. Cascades of Dense Water around the World Ocean. Progress in Oceanography, [e-journal] 60(1), pp. 47-98. doi:10.1016/j.pocean.2003.12.002
  43. Ivanov, V.V., 2011. Intensification of Water Exchange between the Shelf and the Arctic Basin in Conditions of Ice Depletion. Doklady Earth Sciences, [e-journal] 441(1), pp. 1533- 1536. doi:10.1134/S1028334X11110043
  44. Nof, D., 1983. The Translation of Isolated Cold Eddies on a Sloping Bottom. Deep Sea Research Part A. Oceanographic Research Papers, [e-journal] 30(2), pp. 171-182. doi:10.1016/0198-0149(83)90067-5
  45. Atadzhanova, O.A., Zimin, A.V., Svergun, E.I. and Konik, A.A. 2018. Submesoscale Eddy Structures and Frontal Dynamics in the Barents Sea. Physical Oceanography, [e-journal], 25(3), pp. 220-228. doi: 10.22449/1573-160X-2018-3-220-228

Download the article (PDF)