Distribution of 137Cs in the Surface Layer of the Black Sea in Summer, 2017

I. I. Dovhyi1, ✉, D. A. Kremenchutskii1, N. A. Bezhin1, O. N. Kozlovskaia1, V. V. Milyutin2, E. A. Kozlitin2

1 Marine Hydrophysical Institute, Russian Academy of Sciences, Sevastopol, Russian Federation

2 Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, Russian Federation

e-mail: dovhyi.illarion@yandex.ru

Abstract

Purpose. The purpose of the study is to investigate distribution of 137Cs in the coastal and deep-water part of the Black Sea. To achieve this goal, the following scientific problems has to be solved: choosing a method for concentrating 137Cs from seawater samples, seawater sampling and 137Cs concentrating, measurements of the obtained samples, discussion of the obtained results and their comparison with the available scientific literature data.

Methods and Results. Distribution of 137Cs activity in the coastal and deep-water part of the Black Sea was studied. The in situ data on spatial-temporal variability of the 137Cs volumetric activity field in the Black Sea surface layer obtained in course of the 95th cruise of the R/V "Professor Vodyanitsky" in June, 14–July 7, 2017 were used. The data on the radionuclide vertical distribution in the sea active layer were obtained at a number of stations. 22 seawater samples were taken and processed at 11 stations. To separate 137Cs from seawater, a ferrocyanide sorbent of the FCC brand was first applied; it was intentionally developed for selective recovery and separation of 134Cs and 137Cs radionuclides from the technological processing solutions and radioactive waste water.

Conclusions. According to the results, the volumetric activity of 137Cs varied spatially in the range 5.7–8.8 Bq/m3 and amounted on average 6.9 ± 0.2 Bq/m3. Within the active layer boundaries, vertical distribution of 137Cs was found to be uniform.

Keywords

137Cs, volumetric activity analysis, Black Sea, active layer, spatial-temporal variability, sorption, selective sorbent

Acknowledgements

The study was carried out within the framework of the state task No. 0827-2020-0003 “Oceanological processes”, methodological aspects of sorption were studied at the RFBR financial support within the framework of scientific project No. 19-33-60007.

Original russian text

Original Russian Text © I. I. Dovhyi, D. A. Kremenchutskii, N. A. Bezhin, O. N. Kozlovskaia, V. V. Milyutin, E. A. Kozlitin, 2020, published in MORSKOY GIDROFIZICHESKIY ZHURNAL, Vol. 36, Iss. 2, pp. 166–175 (2020)

For citation

Dovhyi, I.I., Kremenchutskii, D.A., Bezhin, N.A., Kozlovskaia, O.N., Milyutin, V.V. and Kozlitin, E.A., 2020. Distribution of 137Cs in the Surface Layer of the Black Sea in summer, 2017. Physical Oceanography, 27(2), pp. 152-160. doi:10.22449/1573-160X-2020-2-152-160

DOI

10.22449/1573-160X-2020-2-152-160

References

  1. Polikarpov, G.G., Egorov, V.N., Gulin, S.B., Stokozov, N.A., Lazorenko, G.E., Mirzoeva, N.Yu., Tereshchenko, N.N., Tsytsugina, V.G., Kulebakina, L.G., Popovichev, V.N., Korotkov, A.A., Evtushenko, D.B., Zherko, N.V. and Malakhova, L.V., 2008. Radioecological Response of the Black Sea to the Chernobyl Accident. Sevastopol: ECOSI-Hydrophysics, 666 p. (in Russian).
  2. Gulin, S.B. and Egorov, V.N., 2016. Radioactive Tracers in the Black Sea: A Tool for Environmental Assessment and Ecological Regulation. In: V. Korogodina, C. Mothersill, S. Inge-Vechtomov and C. Seymour, eds., 2016. Genetics, Evolution and Radiation. Cham: Springer, рр. 303-313. doi:10.1007/978-3-319-48838-7_25
  3. Mirzoeva, N.Yu., Gulin, S.B. and Miroshnichenko, O.N., 2018. Strontium and Cesium Radionuclides. In: A.P. Lisitsin, ed., 2018. The Black Sea System. Moscow: Scientific World, pp. 605-624. doi:10.29006/978-5-91522-473-4.2018 (in Russian).
  4. Egorov, V.N., Povinec, P.P., Polikarpov, G.G., Stokozov, N.A., Gulin, S.B., Kulebakina, L.G. and Osvath, I., 1999. 90Sr and 137Cs in the Black Sea after the Chernobyl NPP Accident: Inventories, Balance and Tracer Applications. Journal of Environmental Radioactivity, 43(2), pp. 137-155. doi:10.1016/S0265-931X(98)00088-5
  5. Gulin, S.B., Egorov, V.N., Duka, M.S., Sidorov, I.G., Proskurnin, V.Yu., Mirzoyeva, N.Yu., Bey, O.N. and Gulina, L.V., 2015. Deep-Water Profiling of 137Cs and 90Sr in the Black Sea: A Further Insight into Dynamics of the Post-Chernobyl Radioactive Contamination. Journal of Radioanalytical and Nuclear Chemistry, 304(2), pp. 779-783. doi:10.1007/s10967-014-3848-9
  6. Gulin, S.B., Mirzoyeva, N.Yu., Egorov, V.N., Polikarpov, G.G., Sidorov, I.G. and Proskurnin, V.Yu., 2013. Secondary Radioactive Contamination of the Black Sea after Chernobyl Accident: Recent Levels, Pathways and Trends. Journal of Environmental Radioactivity, 124, pp. 50-56. doi:10.1016/j.jenvrad.2013.04.001
  7. Buesseler, K.O., Casso, S.A., Hartman, M.C. and Livingston, H.D., 1990. Determination of Fission-Products and Actinides in the Black Sea Following the Chernobyl Accident. Journal of Radioanalytical and Nuclear Chemistry, 138(1), pp. 33-47. doi:10.1007/BF02049345
  8. Buesseler, K.O. and Livingston, H.D., 1997. Time-Series Profiles of 134Cs, 137Cs and 90Sr in the Black Sea. In: E. Özsoy and A. Mikaelyan, eds., 1997. Sensitivity to Change: Black Sea, Baltic Sea and North Sea. NATO ASI Series (Series 2: Environment), vol. 27. Dordrecht: Springer, pp. 239-251. https://doi.org/10.1007/978-94-011-5758-2_19
  9. Eremeev, V.N., Chudinovskikh, T.V., Batrakov, G.F. and Ivanova, T.M., 1991. Radioactive Isotopes of Caesium in the Waters and Near-Water Atmospheric Layer of the Black Sea. Soviet Journal of Physical Oceanography, 2(1), pp. 57-64. doi:10.1007/BF02197418
  10. Delfanti, R., Özsoy, E., Kaberi, H., Schirone, A., Salvi, S., Conte, F., Tsabaris, C. and Papucci, C., 2014. Evolution and Fluxes of 137Cs in the Black Sea/Turkish Straits System/North Aegean Sea. Journal of Marine Systems, 135, pp. 117-123. doi:10.1016/j.jmarsys.2013.01.006
  11. Staneva, J.V., Buesseler, K.O., Stanev, E.V. and Livingston, H.D., 1999. The Application of Radiotracers to a Study of Black Sea Circulation: Validation of Numerical Simulations against Observed Weapons Testing and Chernobyl 137Cs Data. Journal of Geophysical Research, 104(C5), pp. 11099-11114. doi:10.1029/1998JC900121
  12. Bezhenar, R., Maderich, V., Schirone, A., Conte, F. and Martazinova, V., 2019. Transport and Fate of 137Cs in the Mediterranean and Black Seas System during 1945–2020 period: A Modelling Study. Journal of Environmental Radioactivity, 208-209, 106023. doi:10.1016/j.jenvrad.2019.106023
  13. Mann, D.R. and Casso, S.A., 1984. In Situ Chemisorption of Radiocesium from Seawater. Marine Chemistry, 14(4), pp. 307-318. doi:10.1016/0304-4203(84)90027-6
  14. Lehto, J. and Hou, X., 2011. Chemistry and Analysis of Radionuclides: Laboratory Techniques and Methodology. Weinheim: Wiley-VCH, 406 р.
  15. Šebesta, F., 1997. Composite Sorbents of Inorganic Ion-Exchangers and Polyacrylonitrile Binding Matrix. Journal of Radioanalytical and Nuclear Chemistry, 220(1), pp. 77-88. doi:10.1007/BF02035352
  16. Breier, C.F., Pike, S.M., Šebesta, F., Tradd, K., Breier, J.A. and Buesseler, K.O., 2016. New Applications of KNiFC-PAN Resin for Broad Scale Monitoring of Radiocesium Following the Fukushima Dai-ichi Nuclear Distaster. Journal of Radioanalytical and Nuclear Chemistry, 307(3), pp. 2193-2200. doi:10.1007/s10967-015-4421-x

Download the article (PDF)