Effect of Mesoscale Eddy Dynamics on Bioproductivity of the Marine Ecosystems (Review)

A. S. Mikaelyan1, A. G. Zatsepin1, A. A. Kubryakov2, ✉

1 Shirshov Institute of Oceanology, Russian Academy of Sciences, Moscow, Russian Federation

2 Marine Hydrophysical Institute of RAS, Sevastopol, Russian Federation

e-mail: arskubr@ya.ru

Abstract

Different types of mesoscale eddy dynamics are considered in the paper from the viewpoint of their effect on the plankton (mainly phytoplankton) amount and its taxonomic structure. The eddy structures of all types, including cyclonic, anticyclonic, water-body anticyclonic and frontal ones, as well as the dipole structures, actively affect plankton. Theoretical schemes of the influencing mechanisms, which are illustrated by the examples of such an impact on the plankton in the Black Sea, are examined. The analyzed responses of the marine plankton ecosystems to the eddy dynamics and the scientific literature review unambiguously testify the important role of these processes in formation of biological productivity in the seas and oceans. A cyclonic eddy forms the isopycn rise (a dome-like bend) in its core both in the thermocline and in the pycno-halocline that elevates nitrocline; it promotes bioproductivity increase. In the center of the anticyclonic eddy, the thermocline and pycno-halocline deepen (deflection) which negatively affects bioproductivity. At the same time, the rise of the isopycnals occurs at the eddy periphery that, on the contrary, contributes to increase in primary production. In contrast to a regular anticyclone, a water-body (or lens-like) eddy induces the water rise in a layer above the depth of the maximum velocity of a water flow, in other words, in its upper part it often acts like a cyclone. Thus, in any eddy there are the areas where the thermocline rises to the surface and, therefore, the prerequisites for the bioproductivity increase are formed. Strong winds not only enhance the affect of the eddies on biota, but can completely change the nature of this impact. When exposed to wind, the velocity of flow of the biogenic elements to the photic layer in the cyclones can decrease, whereas in the lens-like anticyclones it can increase. The important point is that the long-living eddies change the influencing mechanisms depending on the stage of their evolution. At last, the eddy structures often promote changing in the dominant phytoplankton species that can significantly alter the flow of organic matter to the bottom and affect the global carbon cycle.

Keywords

mesoscale eddies, phytoplankton, chlorophyll-a concentration, coccolithophores, nutrient fluxes, horizontal exchange, vertical exchange, Black Sea

Acknowledgements

The investigation was carried out within the framework of the theme of state task No. 0149-2019-0010 at financial support of the RSF grant No. 20-17-00167. The eddy dynamics affect on the phytoplankton vertical structure was analyzed at support of the RFBR grant No. 20-05-00068. Influence of sub-mesoscale eddies upon the shelf water transfer was analyzed using the satellite data at support of the RFBR grant No. 19-05-00479.

Original russian text

Original Russian Text © A. S. Mikaelyan, A. G. Zatsepin, A. A. Kubryakov, 2020, published in MORSKOY GIDROFIZICHESKIY ZHURNAL, Vol. 36, Iss. 6, pp. 646-675 (2020)

For citation

Mikaelyan, A.S., Zatsepin, A.G. and Kubryakov, A.A., 2020. Effect of Mesoscale Eddy Dynamics on Bioproductivity of the Marine Ecosystems (Review). Physical Oceanography, 27(6), pp. 590-618. doi:10.22449/1573-160X-2020-6-590-618

DOI

10.22449/1573-160X-2020-6-590-618

References

  1. Falkowski, P., Ziemann, D., Kolber, Z. and Bienfang, P.K., 1991. Role of Eddy Pumping in Enhancing Primary Production in the Ocean. Nature, 352(6330), pp. 55-58. https://doi.org/10.1038/352055a0
  2. McGillicuddy Jr., D.J., Robinson, A.R., Siegel, D.A., Jannasch, H.W., Johnson, R., Dickey, T.D., McNeil, J., Michaels, A.F. and Knap, A.H., 1998. Influence of Mesoscale Eddies on New Production in the Sargasso Sea. Nature, 394(6690), pp. 263-266. https://doi.org/10.1038/28367
  3. McGillicuddy Jr., D.J., 2016. Mechanisms of Physical-Biological-Biogeochemical Interaction at the Oceanic Mesoscale. Annual Review of Marine Science, 8, p. 125-159. https://doi.org/10.1146/annurev-marine-010814-015606
  4. Oguz, T., Macias, D. and Tintore, J., 2015. Ageostrophic Frontal Processes Controlling Phytoplankton Production in the Catalano-Balearic Sea (Western Mediterranean). PLoS One, 10(6), e0129045. doi:10.1371/journal.pone.0129045
  5. Levy, M., Klein, P. and Treguier, A.-M., 2001. Impact of Sub-Mesoscale Physics on Production and Subduction of Phytoplankton in an Oligotrophic Regime. Journal of Marine Research, 59(4), pp. 535-565. Available at: https://archimer.ifremer.fr/doc/00000/800/ [Accessed: 05.10.2020].
  6. Mahadevan, A., 2016. The Impact of Submesoscale Physics on Primary Productivity of Plankton. Annual Review of Marine Science, 8, pp. 161-184. https://doi.org/10.1146/annurev-marine-010814-015912
  7. Zatsepin, A., Kubryakov, A., Aleskerova, A., Elkin, D. and Kukleva, O., 2019. Physical Mechanisms of Submesoscale Eddies Generation: Evidences from Laboratory Modeling and Satellite Data in the Black Sea. Ocean Dynamics, 69(2), pp. 253-266. https://doi.org/10.1007/s10236-018-1239-4
  8. Brown, S.L., Landry, M.R., Selph, K.E., Yang, E.J., Rii, Y.M. and Bidigare, R.R., 2008. Diatoms in the Desert: Plankton Community Response to a Mesoscale Eddy in the Subtropical North Pacific. Deep Sea Research Part II: Topical Studies in Oceanography, 55(10-13), pp. 1321-1333. https://doi.org/10.1016/j.dsr2.2008.02.012
  9. Oguz, T., Deshpande, A.G. and Malanotte-Rizzoli, P., 2002. The Role of Mesoscale Processes Controlling Biological Variability in the Black Sea Coastal Waters: Inferences from SeaWIFS-Derived Surface Chlorophyll Field. Continental Shelf Research, 22(10), pp. 1477-1492. https://doi.org/10.1016/S0278-4343(02)00018-3
  10. Moore, T.S., Matear, R.J., Marra, J. and Clementson, L., 2007. Phytoplankton Variability off the Western Australian Coast: Mesoscale Eddies and Their Role in Cross-Shelf Exchange. Deep Sea Research Part II: Topical Studies in Oceanography, 54(8-10), pp. 943-960. https://doi.org/10.1016/j.dsr2.2007.02.006
  11. Kubryakov, A.A., Stanichny, S.V., Zatsepin, A.G. and Kremenetskiy, V.V., 2016. Long-Term Variations of the Black Sea Dynamics and Their Impact on the Marine Ecosystem. Journal of Marine Systems, 163, pp. 80-94. https://doi.org/10.1016/j.jmarsys.2016.06.006
  12. Lima, I.D., Olson, D.B. and Doney, S.C., 2002. Biological Response to Frontal Dynamics and Mesoscale Variability in Oligotrophic Environments: Biological Production and Community Structure. Journal of Geophysical Research: Oceans, 107(C8), 3111. https://doi.org/10.1029/2000JC000393
  13. Goldman, J.C. and McGillicuddy Jr., D.J., 2003. Effect of Large Marine Diatoms Growing at Low Light on Episodic New Production. Limnology and Oceanography, 48(3), pp. 1176-1182. https://doi.org/10.4319/lo.2003.48.3.1176
  14. Reul, A., Rodríguez, V., Jiménez-Gómez, F., Blanco, J.M., Bautista, B., Sarhan, T., Guerrero, F., Ruíz, J. and García-Lafuente, J., 2005. Variability in the Spatio-Temporal Distribution and Size-Structure of Phytoplankton across an Upwelling Area in the NW-Alboran Sea, (W-Mediterranean). Continental Shelf Research, 25(5-6), pp. 589-608. https://doi.org/10.1016/j.csr.2004.09.016
  15. Hanson, C.E., Pattiaratchi, C.B. and Waite, A.M., 2005. Sporadic Upwelling on a Downwelling Coast: Phytoplankton Responses to Spatially Variable Nutrient Dynamics off the Gascoyne Region of Western Australia. Continental Shelf Research, 25(12-13), pp. 1561-1582. https://doi.org/10.1016/j.csr.2005.04.003
  16. Kahru, M., Mitchell, B.G., Gille, S.T., Hewes, C.D. and Holm‐Hansen, O., 2007. Eddies Enhance Biological Production in the Weddell-Scotia Confluence of the Southern Ocean. Geophysical Research Letters, 34(14), L14603. https://doi.org/10.1029/2007GL030430
  17. Mikaelyan, A.S., Mosharov, S.A., Kubryakov, A.A., Pautova, L.A., Fedorov, A. and Chasovnikov, V.K., 2020. The Impact of Physical Processes on Taxonomic Composition, Distribution and Growth of Phytoplankton in the Open Black Sea. Journal of Marine Systems, 208, 103368. https://doi.org/10.1016/j.jmarsys.2020.103368
  18. Arashkevich, E.G., Drits, A.V., Musaeva, E.I., Gagarin, V.I. and Sorokin, P.Yu., 2002. Mesozooplankton Spatial Distribution in Relation to Circulation Pattern in the North-Eastern Part of the Black Sea. In: A. G. Zatsepin and M. V. Flint, Eds., 2002. Multidisciplinary Investigations of the Northeast Part of the Black Sea. Moscow: Nauka, pp. 257-271 (in Russian).
  19. Mikaelyan, A.S., Belyaeva, G.A., Georgieva, L.V., Zavyalova, T.A. and Senichkina, L.G., 2002. Influence of Mesoscale Dynamics on the Black Sea Phytoplankton Communities. In: A. G. Zatsepin and M. V. Flint, Eds., 2002. Multidisciplinary Investigations of the Northeast Part of the Black Sea. Moscow: Nauka, pp. 248-257 (in Russian).
  20. Lévy, M., Jahn, O., Dutkiewicz, S., Follows, M.J., 2014. Phytoplankton Diversity and Community Structure Affected by Oceanic Dispersal and Mesoscale Turbulence. Limnology and Oceanography: Fluids and Environments, 4(1), pp. 67-84. https://doi.org/10.1215/21573689-2768549
  21. Field, C.B., Behrenfeld, M.J., Randerson, J.T. and Falkowski, P., 1998. Primary Production of the Biosphere: Integrating Terrestrial and Oceanic Components. Science, 281(5374), pp. 237-240. doi:10.1126/science.281.5374.237
  22. Siegel, D.A., McGillicuddy Jr., D.J. and Fields, E.A., 1999. Mesoscale Eddies, Satellite Altimetry, and New Production in the Sargasso Sea. Journal of Geophysical Research: Oceans, 104(C6), pp. 13359-13379. https://doi.org/10.1029/1999JC900051
  23. Latun, V.S., 1989. [Role of Anticyclonic Eddies in Intra-Seasonal Evolution of Thermohaline Structure and Geostrophic Circulation]. In: S. P. Levikov, ed., 1989. [Study and Simulation of Hydrophysical Processes in the Black Sea]. Moscow: Gidrometeoizdat, pp. 40-49 (In Russian).
  24. Krivosheya, V.G., Moskalenko, L.M., Ovchinnikov, I.M. and Yakubenko, V.G., 1997. Features of Water Dynamics and Hydrological Structure in the Northeastern Black Sea in Autumn, 1993. Oceanology, 37(3), pp. 321-326.
  25. Zatsepin, A.G., Ginzburg, A.I., Evdoshenko, M.A., Kostianoy, A.G., Kremenetskiy, V.V., Krivosheya, V.G., Motyzhov, S.V., Poyarkov, S.G., Poulain, P.-M., Sheremet, N.A., Skirta, A.Yu., Soloviev, D.M., Stanichny, S.V. and Yakubenko, V.G., 2002. Mesoscale Eddies and Horizontal Exchange in the Black Sea. In: A. G. Zatsepin and M. V. Flint, Eds., 2002. Multidisciplinary Investigations of the Northeast Part of the Black Sea. Moscow: Nauka, pp. 55-81 (in Russian).
  26. Korotaev, G., Oguz, T., Nikiforov, A. and Koblinsky, C., 2003. Seasonal, Interannual, and Mesoscale Variability of the Black Sea Upper Layer Circulation Derived from Altimeter Data. Journal of Geophysical Research: Oceans, 108(C4), 3122. https://doi.org/10.1029/2002JC001508
  27. Kubryakov, A.A. and Stanichny, S.V., 2015. Mesoscale Eddies in the Black Sea from Satellite Altimetry Data. Oceanology, 55(1), pp. 56-67. https://doi.org/10.1134/S0001437015010105
  28. Kubryakov, A.A., Stanichny, S.V. and Volkov, D.L., 2017. Quantifying the Impact of Basin Dynamics on the Regional Sea Level Rise in the Black Sea. Ocean Science, 13(3), pp. 443-452. https://doi.org/10.5194/os-13-443-2017
  29. Ginzburg, A.I., Kostianoy, A.G., Nezlin, N.P., Soloviev, D.M. and Stanichny, S.V., 2002. Anticyclonic Eddies in the Northwestern Black Sea. Journal of Marine Systems, 32(1-3), pp. 91-106. https://doi.org/10.1016/S0924-7963(02)00035-0
  30. Shapiro, G.I., Stanichny, S.V. and Stanychna, R.R., 2010. Anatomy of Shelf–Deep Sea Exchanges by a Mesoscale Eddy in the North West Black Sea as Derived from Remotely Sensed Data. Remote Sensing of Environment, 114(4), pp. 867-875. https://doi.org/10.1016/j.rse.2009.11.020
  31. Karimova, S., 2012. Spiral Eddies in the Baltic, Black and Caspian Seas as Seen by Satellite Radar Data. Advances in Space Research, 50(8), pp. 1107-1124. https://doi.org/10.1016/j.asr.2011.10.027
  32. Kubryakov, A.A., Bagaev, A.V., Stanichny, S.V. and Belokopytov, V.N., 2018. Thermohaline Structure, Transport and Evolution of the Black Sea Eddies from Hydrological and Satellite Data. Progress in Oceanography, 167, p. 44-63. https://doi.org/10.1016/j.pocean.2018.07.007
  33. Balch, W.M., Holligan, P.M., Ackleson, S.G. and Voss, K.J., 1991. Biological and Optical Properties of Mesoscale Coccolithophore Blooms in the Gulf of Maine. Limnology and Oceanography, 36(4), pp. 629-643. https://doi.org/10.4319/lo.1991.36.4.0629
  34. Cokacar, T., Kubilay, N. and Oguz, T., 2001. Structure of Emiliania Huxleyi Blooms in the Black Sea Surface Waters as Detected by SeaWIFS Imagery. Geophysical Research Letters, 28(24), pp. 4607-4610. https://doi.org/10.1029/2001GL013770
  35. Kubryakov, A.A. and Stanichny, S.V., 2011. Mean Dynamic Topography of the Black Sea, Computed from Altimetry, Drifter Measurements and Hydrology Data. Ocean Science, 7(6), pp. 745-753. https://doi.org/10.5194/os-7-745-2011
  36. Blatov, A.S., Bulgakov, N.P., Ivanov, V.A., Kosarev, A.N. and Tuzhilkin, V.S., 1984. [Variability of Hydrophysical Fields of the Black Sea]. Leningrad: Gidrometeoizdat, 239 p. Available at: http://ru.b-ok.org/book/2974762/202428 [Accessed: 08.11.2020] (in Russian).
  37. Zhurbas, V.M., Zatsepin, A.G., Grigor'eva, Yu.V., Poyarkov, S.G., Eremeev, V.N., Kremenetsky, V.V., Motyzhev, S.V., Stanichny, S.V., Soloviev, D.M. and Poulain, P.-M., 2004. Water Circulation and Characteristics of Currents of Different Scales in the Upper Layer of the Black Sea from Drifter Data. Oceanology, 44(1), pp. 30-43.
  38. Zatsepin, A.G., Ginzburg, A.I., Kostianoy, A.G., Kremenetskiy, V.V., Krivosheya, V.G., Stanichny, S.V. and Poulain, P.‐M., 2003. Observations of Black Sea Mesoscale Eddies and Associated Horizontal Mixing. Journal of Geophysical Research: Oceans, 108(C8), 3246. https://doi.org/10.1029/2002JC001390
  39. Kubryakov, A.A. and Stanichny, S.V., 2015. Seasonal and Interannual Variability of the Black Sea Eddies and its Dependence on Characteristics of the Large-Scale Circulation. Deep Sea Research Part I: Oceanographic Research Papers, 97, pp. 80-91. https://doi.org/10.1016/j.dsr.2014.12.002
  40. Stanev, E.V., 1990. On the Mechanisms of the Black Sea Circulation. Earth–Science Reviews, 28(4), pp. 285-319. https://doi.org/10.1016/0012-8252(90)90052-W
  41. Oguz, T., Latun, V.S., Latif, M.A., Vladimirov, V.V., Sur, H.I., Markov, A.A., Özsoy, E., Kotovshchikov, B.B., Eremeev, V.V. and Ünlüata, Ü., 1993. Circulation in the Surface and Intermediate Layers of the Black Sea. Deep Sea Research Part I: Oceanographic Research Papers, 40(8), pp. 1597-1612. https://doi.org/10.1016/0967-0637(93)90018-X
  42. Oguz, T., Aubrey, D.G., Latun, V.S., Demirov, E., Koveshnikov, L., Sur, H.I., Diaconu, V., Besiktepe, S., Duman, M., Limeburner, R. and Eremeev, V., 1994. Mesoscale Circulation and Thermohaline Structure of the Black Sea Observed during HydroBlack '91. Deep Sea Research Part I: Oceanographic Research Papers, 41(4), pp. 603-628. https://doi.org/10.1016/0967-0637(94)90045-0
  43. Korotaev, G., Oguz, T. and Riser, S., 2006. Intermediate and Deep Currents of the Black Sea Obtained from Autonomous Profiling Floats. Deep Sea Research Part II: Topical Studies in Oceanography, 53(17-19), pp. 1901-1910. https://doi.org/10.1016/j.dsr2.2006.04.017
  44. Filyushkin, B.N., Lebedev, K.V. and Kozhelupova, N.G., 2017. Detection of Intermediate Mediterranean Waters in the Atlantic Ocean by ARGO Floats Data. Oceanology, 57(6), pp. 763-771. https://doi.org/10.1134/S0001437017060042.
  45. Worthington, L.V., 1968. Genesis and Evolution of Water Masses. In: J. M. Mitchell, ed., 1968. Causes of Climatic Change. Boston, MA: American Meteorological Society, pp. 63-67.
  46. Sweeney, E.N., McGillicuddy Jr., D.J. and Buesseler, K.O., 2003. Biogeochemical Impacts due to Mesoscale Eddy Activity in the Sargasso Sea as Measured at the Bermuda Atlantic Time-Series Study (BATS). Deep Sea Research Part II: Topical Studies in Oceanography, 50(22-26), pp. 3017-3039. https://doi.org/10.1016/j.dsr2.2003.07.008
  47. Zatsepin, A.G., Denisov, E.S., Emel'yanov, S.V., Kremenetskiy, V.V., Poyarkov, S.G., Stroganov, O.Yu., Stanichnaya, R.R. and Stanichny, S.V., 2005. Effect of Bottom Slope and Wind on the Near-Shore Current in a Rotating Stratified Fluid: Laboratory Modeling for the Black Sea. Oceanology, 45(suppl. 1), pp. S13-S26.
  48. Ginzburg, A.I., 1994. Horizontal Exchange Processes in the Near-Surface Layer of the Black Sea. Issledovanie Zemli iz Kosmosa, (2), pp. 75-83 (in Russian).
  49. Ginzburg, A.I., Zatsepin, A.G., Kostianoy, A.G., Krivosheya, V.G., Poyarkov, S.G., Skirta, A.Yu., Soloviev, D.M., Stanichny, S.V. and Yakubenko, V.G., 2002. Separation of Near-Shore Anticyclonic Eddies from the Caucasian Coast and Their Transformation into Deep-Sea Eddies. In: M. V. Flint and A. G. Zatsepin, Eds., 2002. Multidisciplinary Investigations of the Northeast Part of the Black Sea. Moscow: Nauka, pp. 82-91 (in Russian).
  50. Zatsepin, A.G., Kremenetskiy, V.V., Stanichny, S.V. and Burdyugov, V.M., 2010. Black Sea Basin-Scale Circulation and Mesoscale Dynamics under Wind Forcing. In: A. V. Frolov and Yu. D. Resnyansky, Eds., 2010. Modern Problems of Ocean and Atmosphere Dynamics: The Pavel S. Lineykin memorial volume. Moscow: Triada, pp. 347-368 (in Russian).
  51. He, Q., Zhan, H., Cai, S. and Li, Z., 2016. Eddy Effects on Surface Chlorophyll in the Northern South China Sea: Mechanism Investigation and Temporal Variability Analysis. Deep Sea Research Part I: Oceanographic Research Papers, 112, pp. 25-36. http://dx.doi.org/10.1016/j.dsr.2016.03.004
  52. Chen, Y.-L.L., Chen, H.-Y., Lin, I.-I., Lee, M.-A. and Chang, J., 2007. Effects of Cold Eddy on Phytoplankton Production and Assemblages in Luzon Strait bordering the South China Sea. Journal of Oceanography, 63(4), pp. 671-683. https://doi.org/10.1007/s10872-007-0059-9
  53. Allen, C.B., Kanda, J. and Laws, E.A., 1996. New Production and Photosynthetic Rates within and outside a Cyclonic Mesoscale Eddy in the North Pacific Subtropical Gyre. Deep Sea Research Part I: Oceanographic Research Papers, 43(6), pp. 917-936. https://doi.org/10.1016/0967-0637(96)00022-2
  54. Vaillancourt, R.D., Marra, J., Seki, M.P., Parsons, M.L. and Bidigare, R.R., 2003. Impact of a Cyclonic Eddy on Phytoplankton Community Structure and Photosynthetic Competency in the Subtropical North Pacific Ocean. Deep Sea Research Part I: Oceanographic Research Papers, 50(7), pp. 829-847. https://doi.org/10.1016/S0967-0637(03)00059-1
  55. Mcgillicuddy Jr., D.J., Anderson, L.A., Bates, N.R., Bibby, T., Buesseler, K.O., Carlson, C.A., Davis, C.S., Ewart, C., Falkowski, P.G. [et al.], 2007. Eddy/Wind Interactions Stimulate Extraordinary Mid-Ocean Plankton Blooms. Science, 316(5827), pp. 1021-1026. doi:10.1126/science.1136256
  56. Benitez-Nelson, C.R., Bidigare, R.R., Dickey, T.D., Landry, M.R., Leonard, C.L., Brown, S.L., Nencioli, F., Rii, Y.M., Maiti, K. [et al.] 2007. Mesoscale Eddies Drive Increased Silica Export in the Subtropical Pacific Ocean. Science, 316(5827), pp. 1017-1021. doi:10.1126/science.1136221
  57. Olaizola, M., Ziemann, D.A., Bienfang, P.K., Walsh, W.A. and Conquest, L.D., 1993. Eddy-Induced Oscillations of the Pycnocline Affect the Floristic Composition and Depth Distribution of Phytoplankton in the Subtropical Pacific. Marine Biology, 116(4), pp. 533-542. https://doi.org/10.1007/BF00355471
  58. Bibby, T.S. and Moore, C.M., 2011. Silicate: Nitrate Ratios of Upwelled Waters Control the Phytoplankton Community Sustained by Mesoscale Eddies in Sub-Tropical North Atlantic and Pacific. Biogeosciences, 8(3), pp. 657-666. https://doi.org/10.5194/bg-8-657-2011
  59. Sur, H.I. and Ilyin, Yu.P., 1997. Evolution of Satellite Derived Mesoscale Thermal Patterns in the Black Sea. Progress in Oceanography, 39(2), pp. 109-151. https://doi.org/10.1016/S0079-6611(97)00009-8
  60. Kubryakov, A.A., Zatsepin, A.G. and Stanichny, S.V., 2019. Anomalous Summer-Autumn Phytoplankton Bloom in 2015 in the Black Sea Caused by Several Strong Wind Events. Journal of Marine Systems, 194, pp. 11-24. https://doi.org/10.1016/j.jmarsys.2019.02.004
  61. Liu, F., Yin, K., He, L., Tang, S. and Yao, J., 2018. Influence on Phytoplankton of Different Developmental Stages of Mesoscale Eddies off Eastern Australia. Journal of Sea Research, 137, pp. 1-8. https://doi.org/10.1016/j.seares.2018.03.004
  62. Rodríguez, F., Varela, M., Fernández, E. and Zapata, M., 2003. Phytoplankton and Pigment Distributions in an Anticyclonic Slope Water Oceanic Eddy (SWODDY) in the Southern Bay of Biscay. Marine Biology, 143(5), pp. 995-1011. https://doi.org/10.1007/s00227-003-1129-1
  63. Jeffrey, S.W. and Hallegraeff, G.M., 1980. Studies of Phytoplankton Species and Photosynthetic Pigments in a Warm Core Eddy of the East Australian Current. I. Summer Populations. Marine Ecology Progress Series, 3(4), pp. 285-294. doi:10.3354/meps003285
  64. Zatsepin, A.G., Ostrovskii, A.G., Kremenetskiy, V.V., Piotukh, V.B., Kuklev, S.B., Moskalenko, L.V., Podymov, O.I., Baranov, V.I., Korzh, A.O. and Stanichny, S.V., 2013. On the Nature of Short-Period Oscillations of the Main Black Sea Pycnocline, Submesoscale Eddies, and Response of the Marine Environment to the Catastrophic Shower of 2012. Izvestiya, Atmospheric and Oceanic Physics, 49(6), pp. 659-673. https://doi.org/10.1134/S0001433813060145
  65. De Souza, R.B., Mata, M.M., Garcia, C.A.E., Kampel, M., Oliveira, E.N. and Lorenzzetti, J.A., 2006. Multi-Sensor Satellite and In Situ Measurements of a Warm Core Ocean Eddy South of the Brazil–Malvinas Confluence Region. Remote Sensing of Environment, 100(1), pp. 52-66. https://doi.org/10.1016/j.rse.2005.09.018
  66. Baltar, F., Arístegui, J., Gasol, J.M., Lekunberri, I. and Herndl, G.J., 2010. Mesoscale Eddies: Hotspots of Prokaryotic Activity and Differential Community Structure in the Ocean. The ISME Journal, 4(8), pp. 975-988. https://doi.org/10.1038/ismej.2010.33
  67. Paterson, H.L., Knott, B. and Waite, A.M., 2007. Microzooplankton Community Structure and Grazing on Phytoplankton, in an Eddy Pair in the Indian Ocean off Western Australia. Deep Sea Research Part II: Topical Studies in Oceanography, 54(8-10), pp. 1076-1093. https://doi.org/10.1016/j.dsr2.2006.12.011
  68. Lehahn, Y., d'Ovidio, F., Lévy, M. and Heifetz, E., 2007. Stirring of the Northeast Atlantic Spring Bloom: A Lagrangian Analysis Based on Multisatellite Data. Journal of Geophysical Research: Oceans, 112(C8), C08005. https://doi.org/10.1029/2006JC003927
  69. Zodiatis, G., Drakopoulos, P., Brenner, S. and Groom, S., 2005. Variability of the Cyprus Warm Core Eddy during the CYCLOPS Project. Deep Sea Research Part II: Topical Studies in Oceanography, 52(22-23), pp. 2897-2910. https://doi.org/10.1016/j.dsr2.2005.08.020
  70. Srokosz, M.A., Martin, A.P. and Fasham, M.J.R., 2003. On the Role of Biological Dynamics in Plankton Patchiness at the Mesoscale: An Example from the Eastern North Atlantic Ocean. Journal of Marine Research, 61(4), pp. 517-537. https://doi.org/10.1357/002224003322384915
  71. Huang, B., Hu, J., Xu, H., Cao, Z. and Wang, D., 2010. Phytoplankton Community at Warm Eddies in the Northern South China Sea in Winter 2003/2004. Deep Sea Research Part II: Topical Studies in Oceanography, 57(19-20), pp. 1792-1798. http://dx.doi.org/10.1016/j.dsr2.2010.04.005
  72. Batten, S.D. and Crawford, W.R., 2005. The Influence of Coastal Origin Eddies on Oceanic Plankton Distributions in the Eastern Gulf of Alaska. Deep Sea Research Part II: Topical Studies in Oceanography, 52(7-8), pp. 991-1009. https://doi.org/10.1016/j.dsr2.2005.02.009
  73. Mackas, D.L. and Galbraith, M.D., 2002. Zooplankton Distribution and Dynamics in a North Pacific Eddy of Coastal Origin: I. Transport and Loss of Continental Margin Species. Journal of Oceanography, 58(5), pp. 725-738. https://doi.org/10.1023/A:1022802625242
  74. Kubryakov, A.A., Belokopytov, V.N., Zatsepin, A.G., Stanichny, S.V. and Piotukh, V.B., 2019. The Black Sea Mixed Layer Depth Variability and Its Relation to the Basin Dynamics and Atmospheric Forcing. Physical Oceanography, 26(5), pp. 397-413. doi:10.22449/1573-160X-2019-5-397-413
  75. Sverdrup, H.U., 1953. On Conditions for the Vernal Blooming of Phytoplankton. ICES Journal of Marine Science, 18(3), pp. 287-295. https://doi.org/10.1093/icesjms/18.3.287
  76. Gould Jr., R.W. and Fryxell, G.A., 1988. Phytoplankton Species Composition and Abundance in a Gulf Stream Warm Core Ring. I. Changes over a Five Month Period. Journal of Marine Research, 46(2), pp. 367-398. https://doi.org/10.1357/002224088785113649
  77. Martin, A.P. and Richards, K.J., 2001. Mechanisms for Vertical Nutrient Transport within a North Atlantic Mesoscale Eddy. Deep Sea Research Part II: Topical Studies in Oceanography, 48(4-5), pp. 757-773. https://doi.org/10.1016/S0967-0645(00)00096-5
  78. Gaube, P., Chelton, D.B., Strutton, P.G. and Behrenfeld, M.J., 2013. Satellite Observations of Chlorophyll, Phytoplankton Biomass, and Ekman Pumping in Nonlinear Mesoscale Eddies. Journal of Geophysical Research: Oceans, 118(12), pp. 6349-6370. http://dx.doi.org/10.1002/2013jc009027
  79. Demyshev, S.G. and Dymova, O.A., 2018. Numerical Analysis of the Black Sea Currents and Mesoscale Eddies in 2006 and 2011. Ocean Dynamics, 68(10), pp. 1335-1352. https://doi.org/10.1007/s10236-018-1200-6
  80. Kostianoy, A.G. and Zatsepin, A.G., 1989. Laboratory Experiments with Baroclinic Vortices in a Rotating Fluid. In: J. C. J. Nihoul and B. M. Jamart, Eds., 1989. Mesoscale/Synoptic Coherent Structures in Geophysical Turbulence. Amsterdam: Elsevier, pp. 691-700. https://doi.org/10.1016/S0422-9894(08)70215-0
  81. Lavrova, O.Yu., Kostianoy, A.G., Lebedev, S.A., Mityagina, V.I., Ginzburg, A.I. and Sheremet, N.A., 2011. Complex Satellite Monitoring of the Russian Seas. Moscow: IKI RAN, 480 p. Available at: http://www.iki.rssi.ru/books/2011monitoring.pdf [Accessed: 01.10.2020] (in Russian).
  82. Mityagina, M.I., Lavrova, O.Y., Karimova, S.S., 2010. Multi-Sensor Survey of Seasonal Variability in Coastal Eddy and Internal Wave Signatures in the North-Eastern Black Sea. International Journal of Remote Sensing, 31(17-18), pp. 4779-4790. https://doi.org/10.1080/01431161.2010.485151
  83. Korotaev, G.K., Oguz, T., Nikiforov, A.A., Beckley, B.D. and Koblinskij, C.J., 2002. Dynamics of the Black Sea anticyclones derived from Spacecraft Remote Sensing Altimetry. Issledovanie Zemli iz Kosmosa, (6), pp. 60-70 (in Russian).
  84. Kubryakov, A.A. and Stanichny, S.V., 2015. Dynamics of Batumi Anticyclone from the Satellite Measurements. Physical Oceanography, (2), pp. 59-68. doi:10.22449/1573-160X-2015-2-59-68
  85. Zavialov, P.O., Makkaveev, P.N., Konovalov, B.V., Osadchiev, A.A., Khlebopashev, P.V., Pelevin, V.V., Grabovskiy, A.B., Izhitskiy, A.S., Goncharenko, I.V., Soloviev, D.M. and Polukhin, A.A., 2014. Hydrophysical and Hydrochemical Characteristics of the Sea Areas Adjacent to the Estuaries of Small Rivers of the Russian Coast of the Black Sea. Oceanology, 54(3), pp. 265-280. https://doi.org/10.1134/S0001437014030151
  86. Paasche, E., 2001. A Review of the Coccolithophorid Emiliania Huxleyi (Prymnesiophyceae), with Particular Reference to Growth, Coccolith Formation, and Calcification-Photosynthesis Interactions. Phycologia, 40(6), pp. 503-529. https://doi.org/10.2216/i0031-8884-40-6-503.1
  87. Carvalho, A.D.C.D.O., Mendes, C.R.B., Kerr, R., Azevedo, J.L.L., Galdino, F. and Tavano, V.M., 2019. The Impact of Mesoscale Eddies on the Phytoplankton Community in the South Atlantic Ocean: HPLC-CHEMTAX Approach. Marine Environmental Research, 144, pp. 154-165. https://doi.org/10.1016/j.marenvres.2018.12.003

Download the article (PDF)