Studies of Sub-Mesoscale Variability of the Ocean Upper Layer Based on Satellite Observations Data

B. Chapron1, 2, ✉, V. N. Kudryavtsev2, 3, F. Collard4, N. Rascle5, A. A. Kubryakov3, S. V. Stanichny3

1 Institute Francais de Recherche pour I’Exploitation de la Mer, Plouzané, France

2 Russian State Hydrometeorological University, Saint-Petersburg, Russian Federation

3 Marine Hydrophysical Institute of RAS, Sevastopol, Russian Federation

4 OceanDataLab, Locmaria-Plouzané, France

5 Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California, México

e-mail: bertrand.chapron@ifremer.fr

Abstract

Purpose. The approach represented in the article is applied to analysis of satellite scanner optical images of high spatial resolution for identifying and quantitative determining the characteristics of the sub-mesoscale dynamic processes in the ocean upper layer.

Methods and Results. The Envisat AATSR and MERIS SAR-images are used as the satellite data, which permit to determine the ocean surface temperature and surface brightness in the visible range, respectively. Variations in the sea surface glitter contrasts are associated with modulations of the sea surface roughness (rms slope of short waves) on the currents. It is shown that the surface roughness contrasts correlate with the spatial inhomogeneities of the ocean surface temperature, tracing sub-mesoscale processes in the ocean (spiral eddies, filaments, local shears of currents). The described model of formation of surface manifestations is based on interaction between the Ekman current and the main flow vorticity.

Conclusions. Possibility of detecting and quantitative assessing the intense current gradients in the vicinity of sub-mesoscale fronts is shown. These gradients are manifested in the optical satellite images through the ocean surface roughness modulations. The proposed approach makes it possible to study and to assess quantitatively the dynamic processes taking place in the vicinity of the sub-mesoscale fronts. These processes, in their turn, affect the exchange of momentum, heat and gases between the ocean and the atmosphere. The prospects of applying the sub-mesoscale variability defined from the satellite measurements, to development of the models and the systems for the ocean global observations and monitoring are discussed.

Keywords

satellite observations, air-sea interaction, ocean upper layer dynamics, temporal and spatial variability

Acknowledgements

The study was carried out at support of the Russian Scientific Foundation within the framework of grant № 17-77-30019 and state task No. 0763-2020-0005. We are also grateful to European Space Agency for its support of the SARONG project.

Original russian text

Original Russian Text © The Authors, 2020, published in MORSKOY GIDROFIZICHESKIY ZHURNAL, Vol. 36, Iss. 6, pp. 676-690 (2020)

For citation

Chapron, B., Kudryavtsev, V.N., Collard, F., Rascle, N., Kubryakov, A.A. and Stanichny, S.V., 2020. Studies of Sub-Mesoscale Variability of the Ocean Upper Layer Based on Satellite Observations Data. Physical Oceanography, 27(6), pp. 619-630. doi:10.22449/1573-160X-2020-6-619-630

DOI

10.22449/1573-160X-2020-6-619-630

References

  1. Munk, W., Armi, L., Fischer, K. and Zachariasen, F., 2000. Spirals on the Sea. Proceedings of the Royal Society A, Mathematical, Physical and Engineering Sciences, 456(1997), pp. 1217-1280. https://doi.org/10.1098/rspa.2000.0560
  2. Flament, P. and Armi, L., 2000. The Shear, Convergence, and Thermohaline Structure of a Front. Journal of Physical Oceanography, 30(1), pp. 51-66. https://doi.org/10.1175/1520-0485(2000)030%3C0051:TSCATS%3E2.0.CO;2
  3. Ohlmann, J.C., Molemaker, M.J., Baschek, B., Holt, B., Marmorino, G. and Smith, G., 2017. Drifter Observations of Submesoscale Flow Kinematics in the Coastal Ocean. Geophysical Research Letters, 44(1), pp. 330-337. doi:10.1002/2016GL071537
  4. Rascle, N., Chapron, B., Molemaker, J., Nouguier, F., Ocampo‐Torres, F.J., Osuna Cañedo, J.P., Marié, L., Lund, B. and Horstmann, J., 2020. Monitoring Intense Oceanic Fronts Using Sea Surface Roughness: Satellite, Airplane and In Situ Comparison. Journal of Geophysical Research: Oceans, 125(8), e2019JC015704. https://doi.org/10.1029/2019JC015704
  5. Lapeyre, G. and Klein, P., 2006. Impact of the Small-Scale Elongated Filaments on the Oceanic Vertical Pump. Journal of Marine Research, 64(6), pp. 835-851. https://doi.org/10.1357/002224006779698369
  6. D’Asaro, E.A., Shcherbina, A.Y., Klymak, J.M., Molemaker, J., Novelli, G., Guigand, C.M., Haza, A.C., Haus, B.K., Ryan, E.H., [et al.], 2018. Ocean Convergence and the Dispersion of Flotsam. Proceedings of the National Academy of Sciences, 115(6), pp. 1162-1167. doi:10.1073/pnas.1718453115
  7. Kubryakov, A.A., Aleskerova, A.A., Goryachkin, Yu.N., Stanichny, S.V., Latushkin, A.A. and Fedirko, A.V., 2019. Propagation of the Azov Sea Waters in the Black Sea under Impact of Variable Winds, Geostrophic Currents and Exchange in the Kerch Strait. Progress in Oceanography, 176, 102119. doi:10.1016/j.pocean.2019.05.011
  8. Aleskerova, A.A., Kubryakov, A.A., Goryachkin, Yu.N., Stanichny, S.V. and Garmashov, A.V., 2019. Suspended-Matter Distribution near the Western Coast of Crimea under the Impact of Strong Winds of Various Directions. Izvestiya, Atmospheric and Oceanic Physics, 55(9), pp. 1138-1149. doi:10.1134/s0001433819090044
  9. Mahadevan, A., 2016. The Impact of Submesoscale Physics on Primary Productivity of Plankton. Annual Review of Marine Science, 8, pp. 161-184. doi:10.1146/annurev-marine-010814-015912
  10. Mezić, I., Loire, S., Fonoberov, V.A. and Hogan, P., 2010. A New Mixing Diagnostic and Gulf Oil Spill Movement. Science, 330(6003), pp. 486-489. doi:10.1126/science.1194607
  11. Rascle, N., Molemaker, J., Marié, L., Nouguier, F., Chapron, B., Lund, B. and Mouche, A., 2017. Intense Deformation Field at Oceanic Front Inferred from Directional Sea Surface Roughness Observations. Geophysical Research Letters, 44(11), pp. 5599-5608. doi:10.1002/2017GL073473
  12. Kudryavtsev, V., Akimov, D., Johannessen, J.A. and Chapron, B., 2005. On Radar Imaging of Current Features: 1. Model and Comparison with Observations. Journal of Geophysical Research: Oceans, 110(C7), C07016. doi:10.1029/2004JC002505
  13. Kudryavtsev, V., Myasoedov, A., Chapron, B., Johannessen, J.A. and Collard, F., 2012. Imaging Mesoscale Upper Ocean Dynamics Using Synthetic Aperture Radar and Optical Data. Journal of Geophysical Research: Oceans, 117(C4), C04029. doi:10.1029/2011JC007492
  14. Garrett, C.J.R. and Loder, J.W., 1981. Dynamical Aspects of Shallow Sea Fronts. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 302(1472), pp. 563-581. doi:10.1098/rsta.1981.0183
  15. Klein, P. and Hua, B.L., 1990. The Mesoscale Variability of the Sea Surface Temperature: An Analytical and Numerical Model. Journal of Marine Research, 48(4), pp. 729-763. doi:10.1357/002224090784988700
  16. Garrett, C., 1976. Generation of Langmuir Circulations by Surface Waves – A Feedback Mechanism. Journal of Marine Research, 34(1), pp. 117-130.
  17. Resseguier, V., Mémin, E. and Chapron, B., 2017. Geophysical Flows under Location Uncertainty, Part III: SQG and Frontal Dynamics under Strong Turbulence Conditions. Geophysical & Astrophysical Fluid Dynamics, 111(3), pp. 209-227. doi:10.1080/03091929.2017.1312102
  18. Isern-Fontanet, J., Chapron, B., Lapeyre, G. and Klein, P., 2006. Potential Use of Microwave Sea Surface Temperatures for the Estimation of Ocean Currents. Geophysical Research Letters, 33(24), L24608. doi:10.1029/2006GL027801
  19. Isern‐Fontanet, J., Lapeyre, G., Klein, P., Chapron, B. and Hecht, M.W., 2008. Three‐Dimensional Reconstruction of Oceanic Mesoscale Currents from Surface Information. Journal of Geophysical Research: Oceans, 113(C9), C09005. doi:10.1029/2007JC004692
  20. Giordani, H., Caniaux, G., Prieur, L., Paci, A. and Giraud, S., 2005. A 1 Year Mesoscale Simulation of the Northeast Atlantic: Mixed Layer Heat and Mass Budgets during the POMME Experiment. Journal of Geophysical Research: Oceans, 110(C7), C07S08. https://doi.org/10.1029/2004JC002765
  21. Nagai, T., Tandon, A. and Rudnick, D.L., 2006. Two‐Dimensional Ageostrophic Secondary Circulation at Ocean Fronts due to Vertical Mixing and Large‐Scale Deformation. Journal of Geophysical Research: Oceans, 111(C9), C09038. doi:10.1029/2005JC002964
  22. Ponte, A., Klein, P., Capet, X., Le Traon, P.Y., Chapron, B. and Lherminier, P., 2013. Diagnosing Surface Mixed Layer Dynamics from High-Resolution Satellite Observations: Numerical Insights. Journal of Physical Oceanography, 43(7), pp. 1345-1355. doi:10.1175/jpo-d-12-0136.1
  23. Cronin, M.F. and Kessler, W.S., 2009. Near-Surface Shear Flow in the Tropical Pacific Cold Tongue Front. Journal of Physical Oceanography, 39(5), pp. 1200-1215. doi:10.1175/2008jpo4064.1
  24. Crowe, M.N. and Taylor, J.R., 2020. The Effects of Surface Wind Stress and Buoyancy Flux on the Evolution of a Front in a Turbulent Thermal Wind Balance. Fluids, 5(2), 87. https://doi.org/10.3390/fluids5020087
  25. Wenegrat, J.O. and McPhaden, M.J., 2016. Wind, Waves, and Fronts: Frictional Effects in a Generalized Ekman Model. Journal of Physical Oceanography, 46(2), pp. 371-394. doi:10.1175/jpo-d-15-0162.1
  26. Sheres, D., Kenyon, K.E., Bernstein, R.L. and Beardsley, R.C., 1985. Large Horizontal Surface Velocity Shears in the Ocean Obtained from Images of Refracting Swell and In Situ Moored Current Data. Journal of Geophysical Research: Oceans, 90(C3), 4943. https://doi.org/10.1029/jc090ic03p04943
  27. Grodsky, S., Kudryavtsev, V. and Ivanov, A., 2000. Quasisynchronous Observations of the Gulf Stream Frontal Zone with Almaz-1 SAR and Measurements Taken on Board the R/V Akademik Vernadsky. The Global Atmosphere and Ocean System, 7, pp. 249-272.
  28. Kudryavtsev, V., Yurovskaya, M., Chapron, B., Collard, F. and Donlon, C., 2017. Sun Glitter Imagery of Surface Waves. Part 2: Waves Transformation on Ocean Currents. Journal of Geophysical Research: Oceans, 122(2), pp. 1384-1399. doi:10.1002/2016JC012426
  29. Dulov, V.A. and Kudryavtsev, V.N., 1990. Imagery of the Inhomogeneities of Currents on the Ocean Surface State. Soviet Journal of Physical Oceanography, 1(5), pp. 325-336. doi:10.1007/BF02196830
  30. Lyzenga, D.R., 1998. Effects of Intermediate‐Scale Waves on Radar Signatures of Ocean Fronts and Internal Waves. Journal of Geophysical Research: Oceans, 103(C9), pp. 18759-18768. doi:10.1029/98jc01189
  31. Kubryakov, A.A., Kudryavtsev, V.N. and Stanichny, S.V., 2021. Application of Landsat Imagery for the Investigation of Wave Breaking. Remote Sensing of Environment, 253, 112144. https://doi.org/10.1016/j.rse.2020.112144
  32. Phillips, O.M., 1984. On the Response of Short Ocean Wave Components at a Fixed Wavenumber to Ocean Current Variations. Journal of Physical Oceanography, 14(9), pp. 1425-1433. https://doi.org/10.1175/1520-0485(1984)014%3C1425:OTROSO%3E2.0.CO;2
  33. Brannigan, L., Marshall, D.P., Naveira Garabato, A.C., Nurser, A.G. and Kaiser, J., 2017. Submesoscale Instabilities in Mesoscale Eddies. Journal of Physical Oceanography, 47(12), pp. 3061-3085. https://doi.org/10.1175/JPO-D-16-0178.1
  34. Zatsepin, A., Kubryakov, A., Aleskerova, A., Elkin, D. and Kukleva, O., 2019. Physical Mechanisms of Submesoscale Eddies Generation: Evidences from Laboratory Modeling and Satellite Data in the Black Sea. Ocean Dynamics, 69(2), pp. 253-266. https://doi.org/10.1007/s10236-018-1239-4
  35. Kilic, L., Prigent, C., Aires, F., Boutin, J., Heygster, G., Tonboe, R.T., Roquet, H., Jimenez, C. and Donlon, C., 2018. Expected Performances of the Copernicus Imaging Microwave Radiometer (CIMR) for an All‐Weather and High Spatial Resolution Estimation of Ocean and Sea Ice Parameters. Journal of Geophysical Research: Oceans, 123(10), pp. 7564-7580. doi:10.1029/2018JC014408
  36. Morrow, R., Fu, L.-L., Ardhuin, F., Benkiran, M., Chapron, B., Cosme, E., d’Ovidio, F., Farrar, J.T., Gille, S.T. [et al.], 2019. Global Observations of Fine-Scale Ocean Surface Topography with the Surface Water and Ocean Topography (SWOT) Mission. Frontiers in Marine Science, 6, 232. doi:10.3389/fmars.2019.00232
  37. Lumpkin, R., Özgökmen, T. and Centurioni, L., 2017. Advances in the Application of Surface Drifters. Annual Review of Marine Science, 9, pp. 59-81. https://doi.org/10.1146/annurev-marine-010816-060641
  38. Rascle, N., Nouguier, F., Chapron, B. and Ocampo-Torres, F.J., 2018. Sunglint Images of Current Gradients at High Resolution: Critical Angle and Directional Observing Strategy. Remote Sensing of Environment, 216, pp. 786-797. https://doi.org/10.1016/j.rse.2018.06.011
  39. Kudryavtsev, V.N., Chapron, B., Myasoedov, A.G., Collard, F. and Johannessen, J.A., 2013. On Dual Co‐Polarized SAR Measurements of the Ocean Surface. IEEE Geoscience and Remote Sensing Letters, 10(4), pp. 761-765. doi:10.1109/LGRS.2012.2222341
  40. Kudryavtsev, V., Kozlov, I., Chapron, B. and Johannessen, J., 2014. Quad-Polarization SAR Features of Ocean Currents. Journal of Geophysical Research: Oceans, 119(9), pp. 6046-6065. https://doi.org/10.1002/2014JC010173
  41. Chapron, B., Collard, F. and Ardhuin, F., 2005. Direct Measurements of Ocean Surface Velocity from Space: Interpretation and Validation. Journal of Geophysical Research: Oceans, 110(C7), C07008. doi:10.1029/2004JC002809
  42. Gommenginger, C., Chapron, B., Hogg, A., Buckingham, C., Fox-Kemper, B., Eriksson, L., Soulat, F., Ubelmann, C., Ocampo-Torres, F. [et al.], 2019. SEASTAR: A Mission to Study Ocean Submesoscale Dynamics and Small-Scale Atmosphere-Ocean Processes in Coastal, Shelf and Polar Seas. Frontiers in Marine Science, 6, 457. doi:10.3389/fmars.2019.00457

Download the article (PDF)