How Oceanic Vortices can be Super Long-Lived

G. G. Sutyrin

Graduate School of Oceanography, University of Rhode Island, Narragansett, Rhode Island, USA

e-mail: gsutyrin@hotmail.com

Abstract

Purpose. The article is aimed at substantiating theoretically amazing longevity (up to 5 years) of the individual vortices in the World Ocean against the background of strong fluctuations of the ocean currents and regardless of the Rossby wave dispersion features.

Methods and Results. Evolution of the baroclinic vortices is considered in a hybrid two-layer ocean model over a topographic slope on the beta-plane. In the upper layer with strong potential vorticity anomalies, the currents are assumed to be balanced; in the lower layer at week potential vorticity anomalies, the currents are described in the traditional quasi-geostrophic approximation. Slow evolving almost circular vortices embedded in a vertically sheared current typical of the subtropical part of the ocean are described analytically. The theory shows how a baroclinic vortex is followed by the lee Rossby waves. The vortex drift across the mean current is conditioned mainly by the baroclinic-dipole structure of the represented solution; at that the vortex energy loss related to the Rossby wave radiation can be compensated by the energy stored in the mean currents.

Conclusions. The constructed model provides reasonable estimates of the energy drift and transfer typical of the ocean vortices with strong anomalies of potential vorticity. Direct support of long-lived vortices by the energy of the baroclinic mean flows irrespective of their stability, is of great importance for better understanding the physical mechanisms relating to significant longetivity of the geophysical vortices and the features of their movement.

Keywords

baroclinic vortices, sheared currents, Rossby waves

Acknowledgements

I would like to thank Gennady Korotaev, Gregory Reznik and Andrey Zatsepin for stimulating discussions and comments during the International Conference on Mesoscale and Submesoscale Processes in the Hydrosphere and Atmosphere (MSP-2018) Moscow, Russia. This study was supported by the USA National Science Foundation (grant OCE 1828843). I greatly appreciate useful comments of Ziv Kizner and anonymous reviewer.

Original russian text

Original Russian Text © G. G. Sutyrin, 2020, published in MORSKOY GIDROFIZICHESKIY ZHURNAL, Vol. 36, Iss. 6, pp. 740-756 (2020)

For citation

Sutyrin, G.G., 2020. How Oceanic Vortices can be Super Long-Lived. Physical Oceanography, 27(6), pp. 677-691. doi:10.22449/1573-160X-2020-6-677-691

DOI

10.22449/1573-160X-2020-6-677-691

References

  1. Brekhovskikh, L.M., Fedorov, K.N., Fomin, L.M., Koshlyakov, M.N. and Yampolsky, A.D., 1971. Large-Scale Multi-Buoy Experiment in the Tropical Atlantic. Deep Sea Research and Oceanographic Abstracts, 18(12), pp. 1189-1206. https://doi.org/10.1016/0011- 7471(71)90026-X
  2. Koshlyakov, M.N. and Monin, A.S., 1978. Synoptic Eddies in the Ocean. Annual Review of Earth and Planetary Sciences, 6, pp. 495-523. https://doi.org/10.1146/annurev.ea.06.050178.002431
  3. Robinson, A.R., Ed., 1983. Eddies in Marine Science. Berlin: Springer-Verlag, 612 p. doi:10.1007/978-3-642-69003-7
  4. Koshlyakov, M.N. and Belokopytov, V.N., 2020. Mesoscale Eddies in the Open Ocean: Review of Experimental Investigations. Physical Oceanography, 27(6), pp. 559-572. doi:10.22449/1573-160X-2020-6-559-572
  5. McWilliams, J.C., 2008. The Nature and Consequences of Oceanic Eddies. In: M. W. Hecht, H. Hasumi, Eds., 2008. Ocean Modeling in an Eddying Regime. Washington, DC: American Geophysical Union, pp. 5-15. doi:10.1029/177GM03.
  6. Dong, C., McWilliams, J.C., Liu, Y. and Chen, D., 2014. Global Heat and Salt Transports by Eddy Movement. Nature Communications, 5, 3294. https://doi.org/10.1038/ncomms4294
  7. Chen, G., Han, G. and Yang, X., 2019. On the Intrinsic Shape of Oceanic Eddies Derived from Satellite Altimetry. Remote Sensing of Environment, 228, pp. 75-89. https://doi.org/10.1016/j.rse.2019.04.011
  8. McWilliams, J.C., 1985. Submesoscale, Coherent Vortices in the Ocean. Reviews of Geophysics, 23(2), pp. 165-182. doi:10.1029/RG023i002p00165
  9. Flierl, G.R., 1987. Isolated Eddy Models in Geophysics. Annual Review of Fluid Mechanics, 19, pp. 493-530. https://doi.org/10.1146/annurev.fl.19.010187.002425
  10. Korotaev, G.K., 1988. Theoretical Modeling of Synoptic Activity of an Ocean. Kiev: Naukova Dumka, 157 p. (in Russian).
  11. Korotaev, G.K., 1997. Radiating Vortices in Geophysical Fuid Dynamics. Surveys in Geophysics, 18(6), pp. 567-618. doi:10.1023/A:1006583017505
  12. Nezlin, M.V. and Sutyrin, G.G., 1994. Problems of Simulation of Large, Long-Lived Vortices in the Atmospheres of the Giant Planets (Jupiter, Saturn, Neptune). Surveys in Geophysics, 15(1), pp. 63-99. doi:10.1007/BF00665687
  13. Carton, X., 2001. Hydrodynamical Modeling of Oceanic Vortices. Surveys in Geophysics, 22(3), pp. 179-263. doi:10.1023/A:1013779219578
  14. Sokolovskiy, M.A. and Verron, J., 2014. Dynamics of Vortex Structures in a Stratified Rotating Fluid. Cham: Springer, 382 p. doi:10.1007/978-3-319-00789-2
  15. Stern, M.E., 1975. Minimal Properties of Planetary Eddies. Journal of Marine Research, 33(1), pp. 1-13. Available at: http://images.peabody.yale.edu/publications/jmr/jmr33-01- 01.pdf [Accessed: 20.09.2020].
  16. Larichev, V. and Reznik, G., 1976. On Two-dimensional Solitary Rossby Waves. Doklady Akademii Nauk SSSR, 231(5), pp. 1077-1079. Available at: http://www.mathnet.ru/links/ab484331932b9f8f6f361e722e3cb8e3/dan40813.pdf [Accessed: 15 October 2020] (in Russian).
  17. Meleshko, V.V. and van Heijst, G.J.F., 1994. On Chaplygin’s Investigations of Two- Dimensional Vortex Structures in an Inviscid Fluid. Journal of Fluid Mechanics, 272, pp. 157-182. https://doi.org/10.1017/S0022112094004428
  18. Kizner, Z., Berson, D., Reznik, G. and Sutyrin, G., 2003. The Theory of the Beta-Plane Baroclinic Topographic Modons. Geophysical and Astrophysical Fluid Dynamics, 97(3), pp. 175-211. doi:10.1080/0309192031000108706
  19. Mikhailova, E.I. and Shapiro, N.B., 1980. Two-Dimensional Model of Synoptic Disturbances Evolution in the Ocean. Izvestiya Akademii Nauk SSSR. Fizika Atmosfery i Okeana, 16(8), pp. 823-833 (in Russian).
  20. Petviashvili, V.I., 1980. Red Spot of Jupiter and the Drift Soliton in a Plasma. JETP Letters, 32(11), pp. 619-622. Available at: http://www.jetpletters.ac.ru/cgi- bin/articles/download.cgi/1434/article_21816.pdf [Accessed: 30 October 2020].
  21. Sutyrin, G.G., 1985. On the Theory of solitary anticyclones in a rotating liquid. Doklady Akademii Nauk SSSR, 280(5), pp. 1101-1105 (in Russian).
  22. Sutyrin, G.G. and Yushina, I.G., 1989. Numerical Modelling of the Formation, Evolution, Interaction and Decay of Isolated Vortices. In: J. C. J. Nihoul, B. M. Jamart, Eds., 1989. Mesoscale/Synoptic Coherent Structures in Geophysical Turbulence. Elsevier, pp. 721-736. doi:10.1016/S0422-9894(08)70217-4
  23. Chelton, D.B., Schlax, M.G. and Samelson, R.M., 2011. Global Observations of Nonlinear Mesoscale Eddies. Progress in Oceanography, 91(2), pp. 167-216. doi:10.1016/j.pocean.2011.01.002
  24. Sutyrin, G.G., 2018. Super Long-Lived Ocean Eddies. In: A. G. Zatsepin, A. I. Ginzburg, A. G. Kostianoy, S. A. Sviridov, Eds., 2018. Proceedings of the International Symposium “Mesoscale and Submesoscale Processes in the Hydrosphere and Atmosphere” (MSP-2018), 30 October – 02 November 2018, Moscow. Moscow: SIO RAS, pp. 46-47. Available at: https://ocean.ru/phocadownload/MSP-2018/msp_2018.pdf [Accessed: 20.09.2020] (in Russian).
  25. Korotaev, G.K., 1980. Structure, Dynamics and Energetic of Synoptic Variability of the Ocean. Preprint. Sevastopol: Marine Hydrophysical Institute, 64 p. (in Russian).
  26. Flierl, G.R., 1984. Rossby Wave Radiation from a Strongly Nonlinear Warm Eddy. Journal of Physical Oceanography, 14(1), pp. 47-58. https://doi.org/10.1175/1520- 0485(1984)014%3C0047:RWRFAS%3E2.0.CO;2
  27. McDonald, N.R., 1998. The Decay of Cyclonic Eddies by Rossby Wave Radiation. Journal of Fluid Mechanics, 361, pp. 237-252. doi:10.1017/S0022112098008696
  28. Nycander, J., 2001. Drift Velocity of Radiating Quasigeostrophic Vortices. Journal of Physical Oceanography, 31(8), pp. 2178-2185. https://doi.org/10.1175/1520- 0485(2001)031%3C2178:DVORQV%3E2.0.CO;2
  29. Sutyrin, G.G., 1987. The Beta Effect and the Evolution of a Localized Vortex. Doklady Akademii Nauk SSSR, 296(5), pp. 1076-1080. Available at: http://www.mathnet.ru/links/bb945265df7fd03879fae801ee00058a/dan48090.pdf [Accessed: 30 October 2020].
  30. Kravtsov, S. and Reznik, G., 2019. Numerical Solutions of the Singular Vortex Problem. Physics of Fluids, 31(6), 066602. https://doi.org/10.1063/1.5099896
  31. Gill, A.E., Green, J.S.A. and Simmons, A.J., 1974. Energy Partition in the Large‐Scale Ocean Circulation and the Production of Mid‐Ocean Eddies. Deep Sea Research and Oceanographic Abstracts, 21(7), pp. 499-528. https://doi.org/10.1016/0011-7471(74)90010-2
  32. Vallis, G.K., 2006. Atmospheric and Oceanic Fluid Dynamics: Fundamentals and Large- Scale Circulation. Cambridge: Cambridge University Press, 2006. 866 p.
  33. Ferrari, R. and Wunsch, C., 2009. Ocean Circulation Kinetic Energy: Reservoirs, Sources, and Sinks. Annual Review of Fluid Mechanics, 41, pp. 253-282. https://doi.org/10.1146/annurev.fluid.40.111406.102139
  34. Venaille, A., Vallis, G.K. and Smith, K.S., 2011. Baroclinic Turbulence in the Ocean: Analysis with Primitive Equation and Quasigeostrophic Simulations. Journal of Physical Oceanography, 41(9), pp. 1605-1623. doi:10.1175/JPO-D-10-05021.1
  35. Radko, T., Peixoto de Carvalho, D. and Flanagan, J., 2014. Nonlinear Equilibration of Baroclinic Instability: The Growth Rate Balance Model. Journal of Physical Oceanography, 44(7), pp. 1919-1940. https://doi.org/10.1175/JPO-D-13-0248.1
  36. Vandermeirsh, F., Morel, Y. and Sutyrin, G., 2002. Resistance of a Coherent Vortex to a Vertical Shear. Journal of Physical Oceanography, 32(11), pp. 3089-3100. https://doi.org/10.1175/1520-0485(2002)032%3C3089:ROACVT%3E2.0.CO;2
  37. Sutyrin, G.G. and Radko, T., 2021. Why the Most Long-Lived Eddies are Found in the Subtropical Ocean Westward Flows. Ocean Modelling, 153, 101825.
  38. Richardson, L.F., 1922. Weather Prediction by Numerical Process. Cambridge: The University Press, 258 p. Available at: https://archive.org/details/weatherpredictio00richrich [Accessed: 30 October 2020].
  39. Monin, A.S., 1972. Weather Forecasting as a Problem in Physics. M. I. T. Press, 199 p.
  40. Kamenkovich, V.M., Koshlyakov, M.N. and Monin, A.S., eds., 1986. Synoptic Eddies in the Ocean. Netherlands, Dordrecht: Springer, 1986. 443 p.
  41. Sutyrin, G.G. and Grimshaw, R., 2005. Frictional Effects on the Deep-flow Feedback on the β-Drift of a Baroclinic Vortex over Sloping Topography. Deep Sea Research Part I: Oceanographic Research Papers, 52(11), pp. 2156-2167. doi:10.1016/j.dsr.2005.06.017
  42. Sutyrin, G.G., 1986. Synoptic Movements of Finite Amplitude. Doklady Akademii Nauk SSSR, 290(5), pp. 1084-1088. Available at: http://www.mathnet.ru/links/5662892d8fad089be8eb8a118be68902/dan47702.pdf [Accessed: 15 October 2020] (in Russian).
  43. Sutyrin, G.G., 2004. Agradient Velocity, Vortical Motion and Gravity Waves in a Rotating Shallow-Water Model. Quarterly Journal of the Royal Meteorological Society, 130(601), pp. 1977-1989. https://doi.org/10.1256/qj.03.54
  44. Phillips, N.A., 1954. Energy Transformations and Meridional Circulations Associated with Simple Baroclinic Waves in a Two-Level, Quasi-geostrophic Model. Tellus, 6(3), pp. 274-286. https://doi.org/10.3402/tellusa.v6i3.8734
  45. Tulloch, R., Marshall, J., Hill, C. and Smith, K.S., 2011. Scales, Growth Rates, and Spectral fluxes of Baroclinic Instability in the Ocean. Journal of Physical Oceanography, 41(6), pp. 1057-1076. https://doi.org/10.1175/2011JPO4404.1
  46. Thompson, A.F. and Young, W.R., 2006. Scaling Baroclinic Eddy Fluxes: Vortices and Energy Balance. Journal of Physical Oceanography, 36(4), pp. 720-738. https://doi.org/10.1175/JPO2874.1
  47. Reznik, G.M. and Sutyrin, G.G., 2001. Baroclinic Topographic Modons. Journal of Fluid Mechanics, 437, pp. 121-142. doi:10.1017/S0022112001004062
  48. Sutyrin, G.G. and Flierl, G.R., 1994. Intense Vortex Motion on the Beta Plane: Development of the Beta Gyres. Journal of the Atmospheric Sciences, 51(5), pp. 773-790. https://doi.org/10.1175/1520-0469(1994)051%3C0773:IVMOTB%3E2.0.CO;2
  49. Dilmahamod, A.F., Aguiar‐González, B., Penven, P., Reason, C.J.C., De Ruijter, W.P.M., Malan, N. and Hermes, J.C., 2018. SIDDIES Corridor: A Major East‐West Pathway of Long‐Lived Surface and Subsurface Eddies Crossing the Subtropical South Indian Ocean. Journal of Geophysical Research: Oceans, 123(8), pp. 5406-5425. https://doi.org/10.1029/2018JC013828
  50. Sutyrin, G.G., 2020. How Baroclinic Vortices Intensify Resulting from Erosion of Their Cores and/or Changing Environment. Ocean Modelling, 156, 101711. https://doi.org/10.1016/j.ocemod.2020.101711
  51. Pegliasco, C., Chaigneau, A. and Morrow, R., 2015. Main Eddy Vertical Structures Observed in the Four Major Eastern Boundary Upwelling Systems. Journal of Geophysical Research: Oceans, 120(9), pp. 6008-6033. https://doi.org/10.1002/2015JC010950
  52. Burgess, B.H., Dritschel, D.G. and Scott, R.K., 2017. Vortex Scaling Ranges in Two- Dimensional Turbulence. Physics of Fluids, 29(11), 111104. https://doi.org/10.1063/1.4993144
  53. Sutyrin, G.G., 1989. Azimuthal Waves and Symmetrization of an Intense Vortex. Doklady Akademii Nauk SSSR, 304(5), pp. 1086-1091. Available at: http://www.mathnet.ru/links/8a31183a00e5c592d7d0ebfc624dda46/dan48505.pdf [Accessed: 30 October 2020] (in Russian).
  54. Sutyrin, G.G., 2019. On Vortex Intensification due to Stretching out of Weak Satellites. Physics of Fluids, 31(7), 075103. https://doi.org/10.1063/1.5098068
  55. Sutyrin, G.G. and Radko, T., 2019. On the Peripheral Intensification of Two-Dimensional Vortices in Smaller-Scale Randomly Forcing Flow. Physics of Fluids, 31(10), 101701. https://doi.org/10.1063/1.5118752
  56. Benilov, E.S., 2004. Stability of Vortices in a Two-Layer Ocean with Uniform Potential Vorticity in the Lower Layer. Journal of Fluid Mechanics, 502, pp. 207-232. doi:10.1017/S0022112003007547
  57. Sutyrin, G., 2015. Generation of Deep Eddies by a Turning Baroclinic Jet. Deep Sea Research Part I: Oceanographic Research Papers, 101, pp. 1-6. doi:10.1016/j.dsr.2015.02.011
  58. Sutyrin, G.G. and Radko, T., 2016. Stabilization of Isolated Vortices in a Rotating Stratified Fluid. Fluids, 1(3), 26. doi:10.3390/fluids1030026
  59. Sutyrin, G., 2015. Why Compensated Cold-Core Rings Look Stable. Geophysical Research Letters, 42(13), pp. 5395-5402. doi:10.1002/2015GL064378
  60. Sutyrin, G.G., 2016. On Sharp Vorticity Gradients in Elongating Baroclinic Eddies and Their Stabilization with a Solid-Body Rotation. Geophysical Research Letters, 43(11), pp. 5802- 5811. doi:10.1002/2016GL069019
  61. Legras, B. and Dritschel, D., 1993. Vortex Stripping and the Generation of High Vorticity Gradients in Two-Dimensional Flows. Applied Scientific Research, 51(1-2), pp. 445-455. https://doi.org/10.1007/BF01082574
  62. Mariotti, A., Legras, B. and Dritschel, D.G., 1994. Vortex Stripping and the Erosion of Coherent Structures in Two-Dimensional Flows. Physics of Fluids, 6(12), 3954. https://doi.org/10.1063/1.868385
  63. Legras, B., Dritschel, D.G. and Caillol, P., 2001. The Erosion of a Distributed Two- Dimensional Vortex in a Background Straining Flow. Journal of Fluid Mechanics, 441, pp. 369-398. https://doi.org/10.1017/S002211200100502X
  64. Sutyrin, G. and Carton, X., 2006. Vortex Interaction with a Zonal Rossby Wave in a Quasi- Geostrophic Model. Dynamics of Atmospheres and Oceans, 41(2), pp. 85-102. doi:10.1016/j.dynatmoce.2005.10.004
  65. Sutyrin, G.G., 1992. Maintenance of Quick Fluid Rotation in the Cores of Long-Lived Oceanic Eddies. Journal of Marine Systems, 3(6), pp. 489-496. doi:10.1016/0924- 7963(92)90019-5

Download the article (PDF)