Seasonal and Vertical Variability of Currents Energy in the Sub-Mesoscale Range on the Black Sea Shelf and in Its Central Part

O. S. Puzina, A. A. Kubryakov, A. I. Mizyuk

Marine Hydrophysical Institute of RAS, Sevastopol, Russian Federation

e-mail: oksana_puzina@mhi-ras.ru

Abstract

Purpose. The study is aimed at investigating seasonal variability and vertical distribution of the sub-mesoscale currents energy (scales L = 1 ... 10 km, T = 1 ... 10 days) in the deep and shelf zones of the Black Sea.

Methods and Results. The study is based on the spectral analysis of the results obtained from the NEMO model numerical calculations performed with high spatial resolution 1 km. The analysis shows that the seasonal variability of the submesoscale energy is significantly different in deep and shelf zones of the basin. At the same time, in both regions, seasonal variation of energy of the sub-mesoscale currents with scales L < 10 rm (Esp) is in good agreement with that of the density fluctuations on the same scales. In the central part of the sea, the high values of Esp are concentrated in the upper mixed layer throughout the whole year. The Esp peak is observed in winter at the depths 0–40 m, which indicates the important role of baroclinic instability induced by the inhomogeneous distribution of the mixed layer depth (MLD) in the generation of sub-mesoscale processes. At the same time, in February in the central part of the northwestern shelf, an absolute minimum of (Esp) is observed. This minimum is caused by the complete mixing and barotropization of the water column. The Esp maximum values are observed in the shelf in September – October. This is related to the intensification of the brackish water transport from the river mouths by mesoscale eddies. In the autumn period high values of Esp in the shelf and deep part of the basin are observed in the deeper layer, compare to summer months .Variability of the Esp vertical distribution coincides to the time variation of MLD. Variability of the submesoscale energy is of a pulsating character with the short-term intensifications and weakenings. Such variability is significantly related to the passing of the mesoscale fronts and the cross-shelf water transport caused by the eddies and upwellings, which lead to the increase of the baroclinic instability.

Conclusions. Analysis of the seasonal and vertical variability of the submesoscale currents in the Black Sea deep and shelf zones evidences about the decisive role of the baroclinic instability triggered mainly by the heterogeneity of MLD on their dynamics.

Keywords

Black Sea, spectral analysis, sub-mesoscale currents, sub-mesoscale eddies, baroclinic instability, numerical modeling, NEMO

Acknowledgements

Seasonal variability of the sub-mesoscale fluctuations was studied with support of the RFBR grant No. 19-05-00479.

Original russian text

Original Russian Text © O. S. Puzina, A. A. Kubryakov, A. I. Mizyuk, 2021, published in MORSKOY GIDROFIZICHESKIY ZHURNAL, Vol. 37, Iss. 1, pp. 41-56 (2021)

For citation

Puzina, O.S., Kubryakov, A.A. and Mizyuk, A.I., 2021. Seasonal and Vertical Variability of Currents Energy in the Sub-Mesoscale Range on the Black Sea Shelf and in Its Central Part. Physical Oceanography, 28(1), pp. 37-51. doi:10.22449/1573-160X-2021-1-37-51

DOI

10.22449/1573-160X-2021-1-37-51

References

  1. McWilliams, J.C., 2016. Submesoscale Currents in the Ocean. Proceedings of the Royal Society A. Mathematical, Physical and Engineering Sciences, 472(2189), 20160117. doi:10.1098/rspa.2016.0117
  2. Klein, P. and Lapeyre, G., 2009. The Oceanic Vertical Pump Induced by Mesoscale and Submesoscale Turbulence. Annual Review of Marine Science, 1, pp. 351-375. doi:10.1146/annurev.marine.010908.163704
  3. Capet, X., Mcwilliams, J.C., Molemaker, M.J. and Shchepetkin, A.F., 2008. Mesoscale to Submesoscale Transition in the California Current System. Part II: Frontal Processes. Journal of Physical Oceanography, 38(1), pp. 44-64. https://doi.org/10.1175/2007JPO3672.1
  4. Thomas, L.N., Tandon, A. and Mahadevan, A., 2008. Submesoscale Processes and Dynamics. In: M. W. Hecht and H. Hasumi, Eds., 2008. Ocean Modeling in an Eddying Regime. Washington, D. C.: American Geophysical Union, pp. 17-38. doi:10.1029/177GM04
  5. Mahadevan, A. and Tandon, A., 2006. An Analysis of Mechanisms for Submesoscale Vertical Motion at Ocean Fronts. Ocean Modelling, 14(3-4), pp. 241-256. doi:10.1016/j.ocemod.2006.05.006
  6. Aleskerovа, A.A., Kubryakov, A.A., Goryachkin, Yu.N. and Stanichny, S.V., 2017. Propagation of Waters from the Kerch Strait in the Black Sea. Physical Oceanography, (6), pp. 47-57. doi:10.22449/1573-160X-2017-6-47-57
  7. Aleskerovа, A.A., Kubryakov, A.A., Goryachkin, Y.N., Stanichny, S.V. and Garmashov, A.V., 2019. Distribution of Suspended Matter off the Western Coast of the Crimea under Impact of the Strong Winds of Various Directions. Issledovaniye Zemli iz Kosmosa, (2), pp. 74-88. doi:10.31857/S0205-96142019274-88 (in Russian).
  8. Kubryakov, A.A., Stanichny, S.V. and Zatsepin, A.G., 2018. Interannual Variability of Danube Waters Propagation in Summer Period of 1992–2015 and Its Influence on the Black Sea Ecosystem. Journal of Marine Systems, 179, pp. 10-30. doi:10.1016/j.jmarsys.2017.11.001
  9. Zatsepin, A., Kubryakov, A., Aleskerova, A., Elkin, D. and Kukleva, O., 2019. Physical Mechanisms of Submesoscale Eddies Generation: Evidences from Laboratory Modeling and Satellite Data in the Black Sea. Ocean Dynamics, 69(2), pp. 253-266. doi:10.1007/s10236-018-1239-4
  10. Lavrova, O.Yu. and Bocharova, T.Yu., 2006. Satellite SAR Observations of Atmospheric and Oceanic Vortex Structures in the Black Sea Coastal Zone. Advances in Space Research, 38(10), pp. 2162-2168. doi:10.1016/j.asr.2006.03.022
  11. Luo, H., Bracco, A., Cardona, Y. and McWilliams, J.C., 2016. Submesoscale Circulation in the Northern Gulf of Mexico: Surface Processes and the Impact of the Freshwater River Input. Ocean Modelling, 101, pp. 68-82. doi:10.1016/j.ocemod.2016.03.003
  12. Lavrova, O., Serebryany, A., Bocharova, T. and Mityagina, M., 2012. Investigation of fine Spatial Structure of Currents and Submesoscale Eddies Based on Satellite Radar Data and Concurrent Acoustic Measurements. Proceedings of SPIE, Remote Sensing of the Ocean, Sea Ice, Coastal Waters, and Large Water Regions, 8532, 85320L. doi:10.1117/12.970482
  13. Karimova, S.S., Lavrova, O.Yu. and Solov’ev, D.M., 2012. Observation of Eddy Structures in the Baltic Sea with the Use of Radiolocation and Radiometric Satellite Data. Izvestiya, Atmospheric and Oceanic Physics, 48(9), pp. 1006-1013. doi:10.1134/S0001433812090071
  14. Aleskerovа, A.A., Kubrjakov, A.A. and Stanichny, S.V., 2015. Propagation of Suspended Matter under the Influence of Storm Winds off the Western Coast of Crimea by High-Resolution Optical Data. Sovremennyye Problemy Distantsionnogo Zondirovaniya Zemli iz Kosmosa, 12(1), pp. 63-71 (in Russian).
  15. Zatsepin, A.G., Baranov, V.I., Kondrashov, A.A., Korzh, A.O., Kremenetskiy, V.V., Ostrovskii, A.G. and Soloviev, D.M., 2011. Submesoscale Eddies at the Caucasus Black Sea Shelf and the Mechanisms of Their Generation. Oceanology, 51(4), 554. doi:10.1134/S0001437011040205
  16. Zatsepin, A., Kubryakov, A., Aleskerova, A., Elkin, D. and Kukleva, O., 2019. Physical Mechanisms of Submesoscale Eddies Generation: Evidences from Laboratory Modeling and Satellite Data in the Black Sea. Ocean Dynamics, 69(2), pp. 253-266. doi:10.1007/s10236-018-1239-4
  17. Shcherbina, A.Y., D'Asaro, E.A., Lee, C.M., Klymak, J.M., Molemaker, M.J. and McWilliams, J.C., 2013. Statistics of Vertical Vorticity, Divergence, and Strain in a Developed Submesoscale Turbulence Field. Geophysical Research Letters, 40(17), pp. 4706-4711. doi:10.1002/grl.50919
  18. Brannigan, L., Marshall, D.P., Naveira-Garabato, A. and Nurser, A.J.G., 2015. The Seasonal Cycle of Submesoscale Flows. Ocean Modelling, 92, pp. 69-84. doi:10.1016/j.ocemod.2015.05.002
  19. Callies, J., Ferrari, R., Klymak, J. and Gula, J., 2015. Seasonality in Submesoscale Turbulence. Nature Communications, 6, 6862. doi:10.1038/ncomms7862
  20. Mensa, J.A., Garraffo, Z., Griffa, A., Özgökmen, T.M., Haza, A. and Veneziani, M., 2013. Seasonality of the Submesoscale Dynamics in the Gulf Stream Region. Ocean Dynamics, 63(8), pp. 923-941. doi:10.1007/s10236-013-0633-1
  21. Thompson, A.F., Lazar, A., Buckingham, C., Naveira Garabato, A.C., Damerell, G.M. and Heywood, K.J., 2016. Open-Ocean Submesoscale Motions: A Full Seasonal Cycle of Mixed Layer Instabilities from Gliders. Journal of Physical Oceanography, 46(4), pp. 1285-1307. doi:10.1175/JPO-D-15-0170.1
  22. Demyshev, S.G. and Dymova, O.A., 2013. Numerical Analysis of the Mesoscale Features of Circulation in the Black Sea Coastal Zone. Izvestiya, Atmospheric and Oceanic Physics, 49(6), pp. 603-610. https://doi.org/10.1134/S0001433813060030
  23. Divinsky, B.V., Kuklev, S.B., Zatsepin, A.G. and Chubarenko, B.V., 2015. Simulation of Submesoscale Variability of Currents in the Black Sea Coastal Zone. Oceanology, 55(6), pp. 814-819. https://doi.org/10.1134/S000143701506003X
  24. Zalesnyi, V.B., Gusev, A.V. and Agoshkov, V.I., 2016. Modeling Black Sea Circulation with High Resolution in the Coastal Zone. Izvestiya, Atmospheric and Oceanic Physics, 52(3), pp. 277-293. https://doi.org/10.1134/S0001433816030142
  25. Madec, G., 2008. NEMO Ocean Engine. Note du Pôle de modélisation. France: Institut Pierre-Simon Laplace. Available at: https://www.nemo-ocean.eu/doc/node1.html [Accessed: 5 November 2020].
  26. Mizyuk, A.I., Korotaev, G.K., Grigoriev, A.V., Puzina, O.S. and Lishaev, P.N., 2019. Long-Term Variability of Thermohaline Characteristics of the Azov Sea Based on the Numerical Eddy-Resolving Model. Physical Oceanography, 26(5), pp. 438-450. doi:10.22449/1573-160X-2019-5-438-450
  27. Zalesak, S.T., 1979. Fully Multidimensional Flux-Corrected Transport Algorithms for Fluids. Journal of Computational Physics, 31(3), pp. 335-362. https://doi.org/10.1016/0021-9991(79)90051-2
  28. Rodi, W., 1987. Examples of Calculation Methods for Flow and Mixing in Stratified Fluids. Journal of Geophysical Research: Oceans, 92(C5), pp. 5305-5328. https://doi.org/10.1029/JC092iC05p05305
  29. Zatsepin, A.G., Ginzburg, A.I., Kostianoy, A.G., Kremenetskiy, V.V., Krivosheya, V.G., Stanichny, S.V. and Poulain, P.‐M., 2003. Observations of Black Sea Mesoscale Eddies and Associated Horizontal Mixing. Journal of Geophysical Research: Oceans, 108(C8), 3246. doi:10.1029/2002JC001390
  30. Kubryakov, A.A. and Stanichny, S.V., 2015. Seasonal and Interannual Variability of the Black Sea Eddies and Its Dependence on Characteristics of the Large-Scale Circulation. Deep Sea Research Part I: Oceanographic Research Papers, 97, pp. 80-91. doi:10.1016/j.dsr.2014.12.002
  31. Nelepo, B. A., Ed., 1984. Variability of Hydrophysical Fields of the Black Sea. Leningrad: Gidrometeoizdat, 240 p. (in Russian).
  32. Callies, J., Flierl, G., Ferrari, R. and Fox-Kemper, B., 2016. The Role of Mixed-Layer Instabilities in Submesoscale Turbulence. Journal of Fluid Mechanics, 788, pp. 5-41. doi:10.1017/jfm.2015.700
  33. Titov, V.B., 2004. Integral Effect of Thermal and Dynamical Atmospheric Factors on the Hydrological Structure of the Black Sea Waters. Oceanology, 44(6), pp. 783-788.
  34. Kubryakov, A.A., Belokopytov, V.N., Zatsepin, A.G., Stanichny, S.V. and Piotukh, V.B., 2019. The Black Sea Mixed Layer Depth Variability and Its Relation to the Basin Dynamics and Atmospheric Forcing. Physical Oceanography, 26(5), pp. 397-413. doi:10.22449/1573-160X-2019-5-397-413
  35. Kubryakov, A.A., Mizyuk, A.I., Puzina, O.S. and Senderov, M.V., 2018. Three-Dimensional Identification of the Black Sea Mesoscale Eddies according to NEMO Numerical Model Calculations. Physical Oceanography, 25(1), pp. 18-26. doi:10.22449/1573-160X-2018-1-18-26

Download the article (PDF)